Kiichiro Totani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768724/publications.pdf

Version: 2024-02-01

		471509	414414
36	1,014 citations	17	32
papers	citations	h-index	g-index
20	20	20	F.70
38	38	38	570
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Recognition Motif of the Glycoprotein-Folding Sensor Enzyme UDP-Glc:Glycoprotein Glucosyltransferase. Biochemistry, 2009, 48, 2933-2940.	2.5	109
2	Synthetic Substrates for an Endoplasmic Reticulum Protein-Folding Sensor, UDP-Glucose: Glycoprotein Glucosyltransferase. Angewandte Chemie - International Edition, 2005, 44, 7950-7954.	13.8	91
3	Substrate Specificity Analysis of Endoplasmic Reticulum Glucosidase II Using Synthetic High Mannose-type Glycans. Journal of Biological Chemistry, 2006, 281, 31502-31508.	3.4	88
4	Effects of Macromolecular Crowding on Glycoprotein Processing Enzymes. Journal of the American Chemical Society, 2008, 130, 2101-2107.	13.7	85
5	Comprehensive synthesis of ER related high-mannose-type sugar chains by convergent strategy. Tetrahedron, 2006, 62, 8262-8277.	1.9	76
6	Structural approaches to the study of oligosaccharides in glycoprotein quality control. Current Opinion in Structural Biology, 2005, 15, 481-489.	5.7	61
7	The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2. Blood, 2008, 111, 1972-1979.	1.4	54
8	Chemical approaches toward understanding glycan-mediated protein quality control. Current Opinion in Chemical Biology, 2009, 13, 582-591.	6.1	52
9	Sugar-binding activity of the MRH domain in the ER Â-glucosidase II Â subunit is important for efficient glucose trimming. Glycobiology, 2009, 19, 1127-1135.	2.5	50
10	Genetic analysis of glucosidase II \hat{I}^2 -subunit in trimming of high-mannose-type glycans. Glycobiology, 2009, 19, 834-840.	2.5	43
11	High-mannose-type glycan modifications of dihydrofolate reductase using glycan–methotrexate conjugates. Bioorganic and Medicinal Chemistry, 2006, 14, 5220-5229.	3.0	35
12	First chemical synthesis of triglucosylated tetradecasaccharide (Glc3Man9GlcNAc2), a common precursor of asparagine-linked oligosaccharides. Tetrahedron Letters, 2005, 46, 4197-4200.	1.4	32
13	Substrate Specificity Analysis of Endoplasmic Reticulum Glucosidase II Using Synthetic High Mannose-type Glycans. Journal of Biological Chemistry, 2006, 281, 31502-31508.	3.4	30
14	Detection of Weak Sugar Binding Activity of VIP36 using VIP36-streptavidin Complex and Membrane-based Sugar Chains. Journal of Biochemistry, 2006, 141, 221-229.	1.7	28
15	Tight binding ligand approach to oligosaccharide-grafted protein. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2285-2289.	2.2	24
16	Reconstructed glycan profile for evaluation of operating status of the endoplasmic reticulum glycoprotein quality control. Glycobiology, 2013, 23, 121-131.	2.5	17
17	Selective Manipulation of Discrete Mannosidase Activities in the Endoplasmic Reticulum by Using Reciprocally Selective Inhibitors. ChemBioChem, 2017, 18, 1027-1035.	2.6	17
18	<i>Endo</i> â€Î±â€Mannosidaseâ€Catalyzed Transglycosylation. ChemBioChem, 2017, 18, 1376-1378.	2.6	14

#	Article	IF	CITATIONS
19	Structural insights into N-linked glycan-mediated protein folding from chemical and biological perspectives. Current Opinion in Structural Biology, 2021, 68, 41-47.	5.7	14
20	Calreticulin discriminates the proximal region at the N-glycosylation site of Glc1Man9GlcNAc2 ligand. Biochemical and Biophysical Research Communications, 2015, 466, 350-355.	2.1	12
21	Diverse Effects of Macromolecular Crowding on the Sequential Glycanâ€Processing Pathway Involved in Glycoprotein Quality Control. ChemBioChem, 2013, 14, 753-758.	2.6	11
22	Physicochemical characterization of 6-O-acyl trehalose fatty acid monoesters in desiccated system. Chemistry and Physics of Lipids, 2018, 216, 80-90.	3.2	9
23	Glycopeptide probes for understanding peptide specificity of the folding sensor enzyme UGGT. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5563-5567.	2.2	8
24	Metabolic syndrome perturbs deglucosylation and reglucosylation in the glycoprotein folding cycle. FEBS Letters, 2020, 594, 1759-1769.	2.8	8
25	Silyl-assisted 1,2-cis-α-glucosylation for the synthesis of a triglucoside moiety in high-mannose-type oligosaccharides. RSC Advances, 2015, 5, 75918-75922.	3 . 6	6
26	Glycan structure-based perspectives on the entry and release of glycoproteins in the calnexin/calreticulin cycle. Carbohydrate Research, 2021, 502, 108273.	2.3	6
27	Stratified analysis of lectin-like chaperones in the folding disease-related metabolic syndrome rat model. Biochemical and Biophysical Research Communications, 2016, 478, 247-253.	2.1	4
28	Oligomannose-Type Glycan Processing in the Endoplasmic Reticulum and Its Importance in Misfolding Diseases. Biology, 2022, 11, 199.	2.8	4
29	Influence of aglycone structures on N -glycan processing reactions in the endoplasmic reticulum. Carbohydrate Research, 2017, 439, 16-22.	2.3	3
30	Influence of Hyaluronan Environments on the Stereoselectivity of an Aldol Reaction. Journal of the Chinese Chemical Society, 2012, 59, 265-268.	1.4	2
31	Analytical method for determining relative chaperone activity using an ovalbumin-conjugated column. Biochemical and Biophysical Research Communications, 2015, 456, 333-338.	2.1	2
32	Perturbation of the Relative Contribution of Molecular Chaperones in the Endoplasmic Reticulum. ACS Omega, 2020, 5, 7399-7405.	3.5	2
33	Synthetic trisaccharides reveal discrimination of <i>endo</i> -glycosidic linkages by <i>exo</i> -acting $\hat{l}\pm -1, 2$ -mannosidases in the endoplasmic reticulum. Organic and Biomolecular Chemistry, 2021, 19, 4137-4145.	2.8	2
34	Magnetic beads-assisted mild enrichment procedure for weak-binding lectins. Analytical Biochemistry, 2011, 411, 50-57.	2.4	1
35	Glycoprotein Quality Control Contributed by Secondary Factors. Trends in Glycoscience and Glycotechnology, 2019, 31, SE59-SE60.	0.1	1
36	Mechanistic Study of Silylâ€Assist Effect on 1,2―cis â€Î±â€Glucosylation. ChemistrySelect, 2022, 7, .	1.5	1

3