
Wim H De Jong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4768313/publications.pdf Version: 2024-02-01

WIM H DE LONG

#	Article	IF	CITATIONS
1	Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NanoImpact, 2021, 22, 100313.	4.5	13
2	Nonclinical regulatory immunotoxicity testing of nanomedicinal products: Proposed strategy and possible pitfalls. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1633.	6.1	11
3	Sensitive method for endotoxin determination in nanomedicinal product samples. Nanomedicine, 2019, 14, 1231-1246.	3.3	13
4	Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology, 2019, 13, 50-72.	3.0	94
5	Reconstructed human epidermis models for irritant testing of medical devices. Toxicology in Vitro, 2018, 50, 399-400.	2.4	3
6	Round robin study to evaluate the reconstructed human epidermis (RhE) model as an in vitro skin irritation test for detection of irritant activity in medical device extracts. Toxicology in Vitro, 2018, 50, 439-449.	2.4	24
7	Preparation of irritant polymer samples for an in vitro round robin study. Toxicology in Vitro, 2018, 50, 401-406.	2.4	10
8	Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. Inhalation Toxicology, 2018, 30, 273-286.	1.6	22
9	A high crosslinking grade of hyaluronic acid found in a dermal filler causing adverse effects. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 173-178.	2.8	21
10	The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Particle and Fibre Toxicology, 2018, 15, 9.	6.2	40
11	Quantitative human health risk assessment along the lifecycle of nano-scale copper-based wood preservatives. Nanotoxicology, 2018, 12, 747-765.	3.0	21
12	The effect of zirconium doping of cerium dioxide nanoparticles on pulmonary and cardiovascular toxicity and biodistribution in mice after inhalation. Nanotoxicology, 2017, 11, 1-15.	3.0	15
13	Nanomedicinal products: a survey on specific toxicity and side effects. International Journal of Nanomedicine, 2017, Volume 12, 6107-6129.	6.7	46
14	Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology, 2016, 10, 1-11.	3.0	62
15	A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. International Journal of Nanomedicine, 2016, 11, 2935.	6.7	53
16	Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology, 2016, 10, 1084-1095.	3.0	112
17	Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. Journal of Nanoparticle Research, 2016, 18, 286.	1.9	50
18	Comparative Hazard Identification by a Single Dose Lung Exposure of Zinc Oxide and Silver Nanomaterials in Mice. PLoS ONE, 2015, 10, e0126934.	2.5	51

Wim H De Jong

#	Article	IF	CITATIONS
19	Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology, 2014, 11, 30.	6.2	229
20	Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Particle and Fibre Toxicology, 2014, 11, 18.	6.2	254
21	Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Particle and Fibre Toxicology, 2014, 11, 21.	6.2	71
22	Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34, 8333-8343.	11.4	239
23	Considerations on the EU definition of a nanomaterial: Science to support policy making. Regulatory Toxicology and Pharmacology, 2013, 65, 119-125.	2.7	164
24	Interactions with the Human Body. , 2012, , 3-24.		9
25	Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine, 2011, 6, 339-349.	3.3	136
26	Detection of the Presence of Gold Nanoparticles in Organs by Transmission Electron Microscopy. Materials, 2010, 3, 4681-4694.	2.9	35
27	In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicology and Applied Pharmacology, 2009, 240, 108-116.	2.8	134
28	Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure. Toxicology, 2009, 261, 103-111.	4.2	48
29	Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29, 1912-1919.	11.4	1,378
30	Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3, 133.	6.7	2,903
31	Screening of xenobiotics for direct immunotoxicity in an animal study. Methods, 2007, 41, 3-8.	3.8	36
32	Effect of Prolonged Repeated Exposure to Formaldehyde Donors with Doses Below the EC3 Value on Draining Lymph Node Responses. Journal of Immunotoxicology, 2007, 4, 239-246.	1.7	12
33	Tissue response in the rat and the mouse to degradable dextran hydrogels. Journal of Biomedical Materials Research - Part A, 2007, 83A, 538-545.	4.0	9
34	Tissue response to partially in vitro predegraded poly-L-lactide implants. Biomaterials, 2005, 26, 1781-1791.	11.4	91
35	Long-term exposure to silicone breast implants does not induce antipolymer antibodies. Biomaterials, 2004, 25, 1095-1103.	11.4	13
36	Evaluation of Allergic Potential of Rubber Products: Comparison of Sample Preparation Methods for the Testing of Polymeric Medical Devices. Cutaneous and Ocular Toxicology, 2003, 22, 169-185.	0.3	1

#	Article	IF	CITATIONS
37	Ranking of Allergenic Potency of Rubber Chemicals in a Modified Local Lymph Node Assay. Toxicological Sciences, 2002, 66, 226-232.	3.1	46