
Shengyi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767926/publications.pdf Version: 2024-02-01

SHENCYLLUL

#	Article	IF	CITATIONS
1	Enhancing canola breeding by editing a glucosinolate transporter gene lacking natural variation. Plant Physiology, 2022, 188, 1848-1851.	4.8	24
2	Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L International Journal of Molecular Sciences, 2022, 23, 1936.	4.1	11
3	The Characterization of the Phloem Protein 2 Gene Family Associated with Resistance to Sclerotinia sclerotiorum in Brassica napus. International Journal of Molecular Sciences, 2022, 23, 3934.	4.1	4
4	Multienvironment QTL analysis delineates a major locus associated with homoeologous exchanges for waterâ€use efficiency and seed yield in canola. Plant, Cell and Environment, 2022, 45, 2019-2036.	5.7	11
5	De novo design of future rapeseed crops: Challenges and opportunities. Crop Journal, 2022, 10, 587-596.	5.2	18
6	Genome-Wide Identification and Analysis of Ariadne Gene Family Reveal Its Genetic Effects on Agronomic Traits of Brassica napus. International Journal of Molecular Sciences, 2022, 23, 6265.	4.1	3
7	Phosphorylation-mediated inactivation of C3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis. Plant Physiology, 2022, 190, 1941-1959.	4.8	6
8	A highâ€quality <i>Brassica napus</i> genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnology Journal, 2021, 19, 615-630.	8.3	56
9	Genome Sequence Resource for the Plant Pathogen <i>Sclerotinia sclerotiorum</i> WH6 Isolated in China. Plant Disease, 2021, 105, 3720-3722.	1.4	4
10	The Rlm13 Gene, a New Player of Brassica napus–Leptosphaeria maculans Interaction Maps on Chromosome C03 in Canola. Frontiers in Plant Science, 2021, 12, 654604.	3.6	14
11	SnRK1.1â€mediated resistance of <i>Arabidopsis thaliana</i> to clubroot disease is inhibited by the novel <i>Plasmodiophora brassicae</i> effector PBZF1. Molecular Plant Pathology, 2021, 22, 1057-1069.	4.2	17
12	Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.	8.3	44
13	SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Brassica napus. Plants, 2021, 10, 2475.	3.5	12
14	The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. International Journal of Molecular Sciences, 2021, 22, 12792.	4.1	26
15	BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Plant Science, 2020, 291, 110362.	3.6	19
16	Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in <i>Brassica napus</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3201-3211.	1.8	19
17	Comparing the Infection Biology of Plasmodiophora brassicae in Clubroot Susceptible and Resistant Hosts and Non-hosts. Frontiers in Microbiology, 2020, 11, 507036.	3.5	14
18	Refining the Life Cycle of <i>Plasmodiophora brassicae</i> . Phytopathology, 2020, 110, 1704-1712.	2.2	50

Shengyi Liu

#	Article	IF	CITATIONS
19	Genomeâ€wide association study identifies five new cadmium uptake loci in wheat. Plant Genome, 2020, 13, e20030.	2.8	14
20	Genome-Wide Association Study and QTL Meta-Analysis Identified Novel Genomic Loci Controlling Potassium Use Efficiency and Agronomic Traits in Bread Wheat. Frontiers in Plant Science, 2020, 11, 70.	3.6	31
21	The <i>Arabidopsis</i> <scp>CCCH</scp> protein <scp>C3H14</scp> contributes to basal defense against <i>Botrytis cinerea</i> mainly through the <scp>WRKY33</scp> â€dependent pathway. Plant, Cell and Environment, 2020, 43, 1792-1806.	5.7	19
22	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	21.4	398
23	Gene Expression Changes During the Allo-/Deallopolyploidization Process of Brassica napus. Frontiers in Genetics, 2019, 10, 1279.	2.3	6
24	Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in Brassica napus. International Journal of Molecular Sciences, 2019, 20, 5949.	4.1	14
25	Syntenic quantitative trait loci and genomic divergence for <i>Sclerotinia</i> resistance and flowering time in <i>Brassica napus</i> . Journal of Integrative Plant Biology, 2019, 61, 75-88.	8.5	34
26	RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. Journal of Experimental Botany, 2017, 68, 5079-5091.	4.8	69
27	The highâ€quality genome of <i>Brassica napus</i> cultivar â€~ <scp>ZS</scp> 11' reveals the introgression history in semiâ€winter morphotype. Plant Journal, 2017, 92, 452-468.	5.7	233
28	Reduced Glutathione Mediates Pheno-Ultrastructure, Kinome and Transportome in Chromium-Induced Brassica napus L Frontiers in Plant Science, 2017, 8, 2037.	3.6	42
29	Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum. Scientific Reports, 2016, 6, 33706.	3.3	11
30	EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. BMC Genomics, 2015, 16, 653.	2.8	7
31	Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics, 2015, 16, 1053.	2.8	93
32	BnSGS3 Has Differential Effects on the Accumulation of CMV, ORMV and TuMV in Oilseed Rape. Viruses, 2015, 7, 4169-4185.	3.3	4
33	Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus. PLoS ONE, 2015, 10, e0137414.	2.5	31
34	Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell, Tissue and Organ Culture, 2014, 119, 383-397.	2.3	26
35	Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (Brassica napus L.). DNA Research, 2014, 21, 355-367.	3.4	247
36	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089

Shengyi Liu

#	Article	IF	CITATIONS
37	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	12.8	918
38	Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genomics, 2013, 14, 717.	2.8	70
39	An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods, 2012, 8, 34.	4.3	192
40	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893
41	Overexpression of <i>Brassica napus MPK4</i> Enhances Resistance to <i>Sclerotinia sclerotiorum</i> in Oilseed Rape. Molecular Plant-Microbe Interactions, 2009, 22, 235-244.	2.6	135