Erik C Dreaden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767623/publications.pdf Version: 2024-02-01

FRIK C DREADEN

#	Article	IF	CITATIONS
1	The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 2012, 41, 2740-2779.	38.1	2,900
2	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	38.1	1,709
3	Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 2008, 269, 57-66.	7.2	1,044
4	Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 2011, 40, 3391.	38.1	552
5	Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 2012, 3, 457-478.	2.2	502
6	Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and siRNA for Potential Triple-Negative Breast Cancer Treatment. ACS Nano, 2013, 7, 9571-9584.	14.6	448
7	The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 2014, 88, 1391-1417.	4.2	347
8	A Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. Journal of the American Chemical Society, 2014, 136, 5896-5899.	13.7	338
9	Tamoxifenâ^'Poly(ethylene glycol)â^'Thiol Gold Nanoparticle Conjugates: Enhanced Potency and Selective Delivery for Breast Cancer Treatment. Bioconjugate Chemistry, 2009, 20, 2247-2253.	3.6	239
10	Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nature Communications, 2014, 5, 5460.	12.8	231
11	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano, 2016, 10, 4441-4450.	14.6	193
12	A Nanoparticle-Based Combination Chemotherapy Delivery System for Enhanced Tumor Killing by Dynamic Rewiring of Signaling Pathways. Science Signaling, 2014, 7, ra44.	3.6	172
13	Bimodal Tumor-Targeting from Microenvironment Responsive Hyaluronan Layer-by-Layer (LbL) Nanoparticles. ACS Nano, 2014, 8, 8374-8382.	14.6	161
14	Detecting and Destroying Cancer Cells in More than One Way with Noble Metals and Different Confinement Properties on the Nanoscale. Accounts of Chemical Research, 2012, 45, 1854-1865.	15.6	114
15	Engineering nanolayered particles for modular drug delivery. Journal of Controlled Release, 2016, 240, 364-386.	9.9	112
16	Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics. ACS Nano, 2014, 8, 9767-9780.	14.6	107
17	Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials, 2017, 29, 6578-6595.	6.7	99
18	A Multiâ€RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs. Angewandte Chemie - International Edition, 2016, 55, 3347-3351.	13.8	86

Erik C Dreaden

#	Article	IF	CITATIONS
19	Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo Using Layerâ€byâ€Layer Nanoparticles. Advanced Functional Materials, 2019, 29, 1900018.	14.9	86
20	Small Molecule–Gold Nanorod Conjugates Selectively Target and Induce Macrophage Cytotoxicity towards Breast Cancer Cells. Small, 2012, 8, 2819-2822.	10.0	74
21	Antiandrogen Gold Nanoparticles Dual-Target and Overcome Treatment Resistance in Hormone-Insensitive Prostate Cancer Cells. Bioconjugate Chemistry, 2012, 23, 1507-1512.	3.6	68
22	Highly Scalable, Closed‣oop Synthesis of Drug‣oaded, Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2016, 26, 991-1003.	14.9	67
23	Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano, 2020, 14, 2224-2237.	14.6	64
24	Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clinical Cancer Research, 2015, 21, 4410-4419.	7.0	55
25	Plasmon Field Effects on the Nonradiative Relaxation of Hot Electrons in an Electronically Quantized System: CdTeâ^'Au Coreâ^'Shell Nanowires. Nano Letters, 2008, 8, 2410-2418.	9.1	50
26	Tailoring Plasmonic and Electrostatic Field Effects To Maximize Solar Energy Conversion by Bacteriorhodopsin, the Other Natural Photosynthetic System. Nano Letters, 2011, 11, 3821-3826.	9.1	45
27	Influence of pH and Surface Chemistry on Poly(<scp>l</scp> -lysine) Adsorption onto Solid Supports Investigated by Quartz Crystal Microbalance with Dissipation Monitoring. Journal of Physical Chemistry B, 2015, 119, 10554-10565.	2.6	43
28	Multimodal plasmon coupling in low symmetry gold nanoparticle pairs detected in surface-enhanced Raman scattering. Applied Physics Letters, 2011, 98, .	3.3	25
29	Adsorption of hyaluronic acid on solid supports: Role of pH and surface chemistry in thin film self-assembly. Journal of Colloid and Interface Science, 2015, 448, 197-207.	9.4	25
30	Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2002214.	7.6	19
31	The Dependence of the Plasmon Field Induced Nonradiative Electronic Relaxation Mechanisms on the Gold Shell Thickness in Vertically Aligned CdTeâ^'Au Coreâ^'Shell Nanorods. Nano Letters, 2009, 9, 3772-3779.	9.1	17
32	Exciton Lifetime Tuning by Changing the Plasmon Field Orientation with Respect to the Exciton Transition Moment Direction: CdTe-Au Coreâ^'Shell Nanorods. Nano Letters, 2009, 9, 1242-1248.	9.1	15
33	Pâ€Glycoproteinâ€Dependent Trafficking of Nanoparticleâ€Drug Conjugates. Small, 2014, 10, 1719-1723.	10.0	15
34	Plasmonic Enhancement of Nonradiative Charge Carrier Relaxation and Proposed Effects from Enhanced Radiative Electronic Processes in Semiconductorâ^'Gold Coreâ^'Shell Nanorod Arrays. Journal of Physical Chemistry C, 2011, 115, 5578-5583.	3.1	14
35	RNAâ€Peptide nanoplexes drug DNA damage pathways in highâ€grade serous ovarian tumors. Bioengineering and Translational Medicine, 2018, 3, 26-36.	7.1	12
36	Periodic-shRNA molecules are capable of gene silencing, cytotoxicity and innate immune activation in cancer cells. Nucleic Acids Research, 2016, 44, 545-557.	14.5	10

Erik C Dreaden

#	Article	IF	CITATIONS
37	Rapid Assembly and Screening of Multivalent Immune Cell-Redirecting Therapies for Leukemia. ACS Combinatorial Science, 2020, 22, 533-541.	3.8	9
38	Rational design of multistage drug delivery vehicles for pulmonary RNA interference therapy. International Journal of Pharmaceutics, 2020, 591, 119989.	5.2	9
39	Optical Control of Cytokine Signaling via Bioinspired, Polymer-Induced Latency. Biomacromolecules, 2020, 21, 2635-2644.	5.4	6
40	Nanotechnology and Nanostructures Applied to Head and Neck Cancer. , 2011, , 381-404.		2
41	Exploiting Nanocarriers for Combination Cancer Therapy. Fundamental Biomedical Technologies, 2016, , 375-402.	0.2	1
42	Abstract SY19-01: Therapeutic network re-wiring of the DNA damage response can be used to enhance tumor killing by cytotoxic chemotherapy. , 2015, , .		0