
Amy L Vincent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4767079/publications.pdf Version: 2024-02-01

AMY I VINCENT

#	Article	IF	CITATIONS
1	Antigenic Distance between North American Swine and Human Seasonal H3N2 Influenza A Viruses as an Indication of Zoonotic Risk to Humans. Journal of Virology, 2022, 96, JVI0137421.	3.4	10
2	Characterization of a 2016-2017 Human Seasonal H3 Influenza A Virus Spillover Now Endemic to U.S. Swine. MSphere, 2022, 7, e0080921.	2.9	5
3	Vaccine-Associated Enhanced Respiratory Disease following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs. Journal of Virology, 2022, 96, JVI0172521.	3.4	10
4	Genetic and Antigenic Characterization of an Expanding H3 Influenza A Virus Clade in U.S. Swine Visualized by Nextstrain. MSphere, 2022, 7, .	2.9	9
5	Swine Influenza A Viruses and the Tangled Relationship with Humans. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038737.	6.2	128
6	Characterization of contemporary 2010.1 H3N2 swine influenza A viruses circulating in United States pigs. Virology, 2021, 553, 94-101.	2.4	14
7	Machine Learning Prediction and Experimental Validation of Antigenic Drift in H3 Influenza A Viruses in Swine. MSphere, 2021, 6, .	2.9	13
8	Development of a Novel Live Attenuated Influenza A Virus Vaccine Encoding the IgA-Inducing Protein. Vaccines, 2021, 9, 703.	4.4	8
9	Evolution and Antigenic Advancement of N2 Neuraminidase of Swine Influenza A Viruses Circulating in the United States following Two Separate Introductions from Human Seasonal Viruses. Journal of Virology, 2021, 95, e0063221.	3.4	10
10	Spatial and temporal coevolution of N2 neuraminidase and H1 and H3 hemagglutinin genes of influenza A virus in US swine. Virus Evolution, 2021, 7, veab090.	4.9	14
11	octoFLUshow: an Interactive Tool Describing Spatial and Temporal Trends in the Genetic Diversity of Influenza A Virus in U.S. Swine. Microbiology Resource Announcements, 2021, 10, e0108121.	0.6	11
12	Detection and Characterization of Swine Origin Influenza A(H1N1) Pandemic 2009 Viruses in Humans following Zoonotic Transmission. Journal of Virology, 2020, 95, .	3.4	10
13	Aerosol Transmission from Infected Swine to Ferrets of an H3N2 Virus Collected from an Agricultural Fair and Associated with Human Variant Infections. Journal of Virology, 2020, 94, .	3.4	18
14	Influenza A Virus Field Surveillance at a Swine-Human Interface. MSphere, 2020, 5, .	2.9	26
15	Detection of live attenuated influenza vaccine virus and evidence of reassortment in the U.S. swine population. Journal of Veterinary Diagnostic Investigation, 2020, 32, 301-311.	1.1	39
16	A Brief Introduction to Influenza A Virus in Swine. Methods in Molecular Biology, 2020, 2123, 249-271.	0.9	9
17	Detection and Titration of Influenza A Virus Neuraminidase Inhibiting (NAI) Antibodies Using an Enzyme-Linked Lectin Assay (ELLA). Methods in Molecular Biology, 2020, 2123, 335-344.	0.9	9
18	Enzyme-Linked Immunosorbent Assay for Detection of Serum or Mucosal Isotype-Specific IgG and IgA Whole-Virus Antibody to Influenza A Virus in Swine. Methods in Molecular Biology, 2020, 2123, 311-320.	0.9	3

#	Article	IF	CITATIONS
19	In Vivo Models for Pathotyping and Vaccine Efficacy for Swine Influenza. Methods in Molecular Biology, 2020, 2123, 345-351.	0.9	3
20	octoFLU: Automated Classification for the Evolutionary Origin of Influenza A Virus Gene Sequences Detected in U.S. Swine. Microbiology Resource Announcements, 2019, 8, .	0.6	29
21	Human-Origin Influenza A(H3N2) Reassortant Viruses in Swine, Southeast Mexico. Emerging Infectious Diseases, 2019, 25, 691-700.	4.3	18
22	An avian influenza virus A(H7N9) reassortant that recently emerged in the United States with low pathogenic phenotype does not efficiently infect swine. Influenza and Other Respiratory Viruses, 2019, 13, 288-291.	3.4	4
23	Alphavirus-vectored hemagglutinin subunit vaccine provides partial protection against heterologous challenge in pigs. Vaccine, 2019, 37, 1533-1539.	3.8	10
24	Antigenic evolution of H3N2 influenza A viruses in swine in the United States from 2012 to 2016. Influenza and Other Respiratory Viruses, 2019, 13, 83-90.	3.4	29
25	Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. Journal of Virology, 2019, 93, .	3.4	19
26	Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016. Influenza and Other Respiratory Viruses, 2019, 13, 262-273.	3.4	63
27	Human-Origin Influenza A(H3N2) Reassortant Viruses in Swine, Southeast Mexico. Emerging Infectious Diseases, 2019, 25, .	4.3	0
28	Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 2018, 518, 45-54.	2.4	64
29	Vaccination of pigs with a codon-pair bias de-optimized live attenuated influenza vaccine protects from homologous challenge. Vaccine, 2018, 36, 1101-1107.	3.8	18
30	ISU FLUture: a veterinary diagnostic laboratory web-based platform to monitor the temporal genetic patterns of Influenza A virus in swine. BMC Bioinformatics, 2018, 19, 397.	2.6	50
31	Complete Genome Sequences of Two Novel Human-Like H3N2 Influenza A Viruses, A/swine/Oklahoma/65980/2017 (H3N2) and A/Swine/Oklahoma/65260/2017 (H3N2), Detected in Swine in the United States. Microbiology Resource Announcements, 2018, 7, .	0.6	20
32	The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease. Vaccine, 2018, 36, 6103-6110.	3.8	20
33	Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. Journal of Virology, 2018, 92, .	3.4	11
34	Adaptation of Human Influenza Viruses to Swine. Frontiers in Veterinary Science, 2018, 5, 347.	2.2	61
35	Factors affecting induction of peripheral IFN-Î ³ recall response to influenza A virus vaccination in pigs. Veterinary Immunology and Immunopathology, 2017, 185, 57-65.	1.2	15
36	Influenza A virus vaccines for swine. Veterinary Microbiology, 2017, 206, 35-44.	1.9	85

#	Article	IF	CITATIONS
37	Pigs with Severe Combined Immunodeficiency Are Impaired in Controlling Influenza A Virus Infection. Journal of Innate Immunity, 2017, 9, 193-202.	3.8	12
38	Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs. Journal of Virology, 2017, 91, .	3.4	62
39	Detection and characterization of an H4N6 avian-lineage influenza A virus in pigs in the Midwestern United States. Virology, 2017, 511, 56-65.	2.4	26
40	Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs. Influenza and Other Respiratory Viruses, 2017, 11, 464-470.	3.4	14
41	Influenza Research Database: An integrated bioinformatics resource for influenza virus research. Nucleic Acids Research, 2017, 45, D466-D474.	14.5	293
42	Influenza A(H3N2) Virus in Swine at Agricultural Fairs and Transmission to Humans, Michigan and Ohio, USA, 2016. Emerging Infectious Diseases, 2017, 23, 1551-1555.	4.3	70
43	A highly pathogenic avian-derived influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrates increased replication and transmission in pigs. Journal of General Virology, 2017, 98, 18-30.	2.9	13
44	The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. Journal of General Virology, 2017, 98, 2001-2010.	2.9	54
45	Age at Vaccination and Timing of Infection Do Not Alter Vaccine-Associated Enhanced Respiratory Disease in Influenza A Virus-Infected Pigs. Vaccine Journal, 2016, 23, 470-482.	3.1	19
46	A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. MSphere, 2016, 1, .	2.9	151
47	The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus. Journal of Virology, 2016, 90, 8266-8280.	3.4	54
48	The avianâ€origin H3N2 canine influenza virus that recently emerged in the United States has limited replication in swine. Influenza and Other Respiratory Viruses, 2016, 10, 429-432.	3.4	8
49	Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type. Vaccine, 2016, 34, 3773-3779.	3.8	12
50	Heterologous challenge in the presence of maternally-derived antibodies results in vaccine-associated enhanced respiratory disease in weaned piglets. Virology, 2016, 491, 79-88.	2.4	25
51	The global antigenic diversity of swine influenza A viruses. ELife, 2016, 5, e12217.	6.0	146
52	Swine as a Model for Influenza A Virus Infection and Immunity. ILAR Journal, 2015, 56, 44-52.	1.8	89
53	Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine. Veterinary Microbiology, 2015, 176, 40-49.	1.9	13
54	Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface. Trends in Microbiology, 2015, 23, 142-153.	7.7	196

#	Article	IF	CITATIONS
55	Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance. Virus Research, 2015, 201, 24-31.	2.2	48
56	Continual Reintroduction of Human Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014. Journal of Virology, 2015, 89, 6218-6226.	3.4	104
57	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	12.8	128
58	Oral Fluids as a Live-Animal Sample Source for Evaluating Cross-Reactivity and Cross-Protection following Intranasal Influenza A Virus Vaccination in Pigs. Vaccine Journal, 2015, 22, 1109-1120.	3.1	14
59	Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States. Journal of Virology, 2015, 89, 11213-11222.	3.4	84
60	Serum Virus Neutralization Assay for Detection and Quantitation of Serum-Neutralizing Antibodies to Influenza A Virus in Swine. Methods in Molecular Biology, 2014, 1161, 313-324.	0.9	53
61	Polymorphisms in the haemagglutinin gene influenced the viral shedding of pandemic 2009 influenza virus in swine. Journal of General Virology, 2014, 95, 2618-2626.	2.9	4
62	Substitutions near the Hemagglutinin Receptor-Binding Site Determine the Antigenic Evolution of Influenza A H3N2 Viruses in U.S. Swine. Journal of Virology, 2014, 88, 4752-4763.	3.4	86
63	Live attenuated influenza A virus vaccine protects against A(H1N1)pdm09 heterologous challenge without vaccine associated enhanced respiratory disease. Virology, 2014, 471-473, 93-104.	2.4	60
64	Pathogenesis and Vaccination of Influenza A Virus in Swine. Current Topics in Microbiology and Immunology, 2014, 385, 307-326.	1.1	39
65	Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies. Virology, 2014, 464-465, 45-54.	2.4	46
66	Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. Vaccine, 2014, 32, 5170-5176.	3.8	41
67	Cross-Fostering to Prevent Maternal Cell Transfer Did Not Prevent Vaccine-Associated Enhanced Respiratory Disease that Occurred Following Heterologous Influenza Challenge of Pigs Vaccinated in the Presence of Maternal Immunity. Viral Immunology, 2014, 27, 334-342.	1.3	5
68	Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology, 2014, 88, 10110-10119.	3.4	88
69	A Brief Introduction to Influenza A Virus in Swine. Methods in Molecular Biology, 2014, 1161, 243-258.	0.9	29
70	Hemagglutinin Inhibition Assay with Swine Sera. Methods in Molecular Biology, 2014, 1161, 295-301.	0.9	52
71	Enzyme-Linked Immunosorbent Assay for Detection of Serum or Mucosal Isotype-Specific IgG and IgA Whole-Virus Antibody to Influenza A Virus in Swine. Methods in Molecular Biology, 2014, 1161, 303-312.	0.9	9
72	Antibody repertoire development in fetal and neonatal piglets. <scp>XVI</scp> . Influenza stimulates adaptive immunity, class switch and diversification of the IgG repertoire encoded by downstream Cl ³ genes. Immunology, 2013, 138, 134-144.	4.4	15

#	Article	IF	CITATIONS
73	Genotype patterns of contemporary reassorted H3N2 virus in US swine. Journal of General Virology, 2013, 94, 1236-1241.	2.9	68
74	Efficacy in Pigs of Inactivated and Live Attenuated Influenza Virus Vaccines against Infection and Transmission of an Emerging H3N2 Similar to the 2011-2012 H3N2v. Journal of Virology, 2013, 87, 9895-9903.	3.4	88
75	Vaccine-Induced Anti-HA2 Antibodies Promote Virus Fusion and Enhance Influenza Virus Respiratory Disease. Science Translational Medicine, 2013, 5, 200ra114.	12.4	201
76	Swine influenza virus vaccine serologic crossâ€reactivity to contemporary <scp>US</scp> swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011–2012 H3N2v. Influenza and Other Respiratory Viruses, 2013, 7, 32-41.	3.4	34
77	Vaccine-Associated Enhanced Respiratory Disease Does Not Interfere with the Adaptive Immune Response Following Challenge with Pandemic A/H1N1 2009. Viral Immunology, 2013, 26, 314-321.	1.3	9
78	Population dynamics of cocirculating swine influenza <scp>A</scp> viruses in the <scp>U</scp> nited <scp>S</scp> tates from 2009 to 2012. Influenza and Other Respiratory Viruses, 2013, 7, 42-51.	3.4	134
79	Genotype patterns of contemporary reassorted H3N2 virus in US swine. Journal of General Virology, 2013, 94, 1236-1241.	2.9	52
80	Comparison of Human-Like H1 (-Cluster) Influenza A Viruses in the Swine Host. Influenza Research and Treatment, 2012, 2012, 1-7.	1.5	3
81	Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011. Journal of Virology, 2012, 86, 6804-6814.	3.4	59
82	Global transmission of influenza viruses from humans to swine. Journal of General Virology, 2012, 93, 2195-2203.	2.9	154
83	Live Attenuated Influenza Vaccine Provides Superior Protection from Heterologous Infection in Pigs with Maternal Antibodies without Inducing Vaccine-Associated Enhanced Respiratory Disease. Journal of Virology, 2012, 86, 10597-10605.	3.4	114
84	Restored PB1-F2 in the 2009 Pandemic H1N1 Influenza Virus Has Minimal Effects in Swine. Journal of Virology, 2012, 86, 5523-5532.	3.4	33
85	Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs. Vaccine, 2012, 30, 280-288.	3.8	61
86	Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs. Vaccine, 2012, 30, 5830-5838.	3.8	40
87	Intranasal Vaccination with Replication-Defective Adenovirus Type 5 Encoding Influenza Virus Hemagglutinin Elicits Protective Immunity to Homologous Challenge and Partial Protection to Heterologous Challenge in Pigs. Vaccine Journal, 2012, 19, 1722-1729.	3.1	51
88	Evolution of Novel Reassortant A/H3N2 Influenza Viruses in North American Swine and Humans, 2009–2011. Journal of Virology, 2012, 86, 8872-8878.	3.4	108
89	Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine. Journal of General Virology, 2012, 93, 2204-2214.	2.9	21
90	Genomic reassortment of influenza A virus in North American swine, 1998–2011. Journal of General Virology, 2012, 93, 2584-2589.	2.9	40

#	Article	IF	CITATIONS
91	Contemporary Epidemiology of North American Lineage Triple Reassortant Influenza A Viruses in Pigs. Current Topics in Microbiology and Immunology, 2011, 370, 113-131.	1.1	45
92	Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. Vaccine, 2011, 29, 2712-2719.	3.8	109
93	Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Veterinary Immunology and Immunopathology, 2011, 142, 252-257.	1.2	21
94	Isolamento e caracterização do vÃrus da influenza pandêmico H1N1 em suÃnos no Brasil. Pesquisa Veterinaria Brasileira, 2011, 31, 761-767.	0.5	34
95	Modifications in the Polymerase Genes of a Swine-Like Triple-Reassortant Influenza Virus To Generate Live Attenuated Vaccines against 2009 Pandemic H1N1 Viruses. Journal of Virology, 2011, 85, 456-469.	3.4	85
96	A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice. Virology, 2011, 417, 379-384.	2.4	8
97	Characterization of H1N1 Swine Influenza Viruses Circulating in Canadian Pigs in 2009. Journal of Virology, 2011, 85, 8667-8679.	3.4	41
98	Utility of a Panviral Microarray for Detection of Swine Respiratory Viruses in Clinical Samples. Journal of Clinical Microbiology, 2011, 49, 1542-1548.	3.9	21
99	DNA Vaccination Elicits Protective Immune Responses against Pandemic and Classic Swine Influenza Viruses in Pigs. Vaccine Journal, 2011, 18, 1987-1995.	3.1	52
100	Genetic and antigenic characterization of H1 influenza viruses from United States swine from 2008. Journal of General Virology, 2011, 92, 919-930.	2.9	123
101	Identification and characterization of a highly virulent triple reassortant H1N1 swine influenza virus in the United States. Virus Genes, 2010, 40, 28-36.	1.6	33
102	One-step real-time RT-PCR for pandemic influenza A virus (H1N1) 2009 matrix gene detection in swine samples. Journal of Virological Methods, 2010, 164, 83-87.	2.1	36
103	Experimental inoculation of pigs with pandemic H1N1 2009 virus and HI crossâ€reactivity with contemporary swine influenza virus antisera. Influenza and Other Respiratory Viruses, 2010, 4, 53-60.	3.4	66
104	Detection of Anti-Influenza A Nucleoprotein Antibodies in Pigs Using a Commercial Influenza Epitope-Blocking Enzyme-Linked Immunosorbent Assay Developed for Avian Species. Journal of Veterinary Diagnostic Investigation, 2010, 22, 3-9.	1.1	66
105	Influenza virus coinfection with Bordetella bronchiseptica enhances bacterial colonization and host responses exacerbating pulmonary lesions. Microbial Pathogenesis, 2010, 49, 237-245.	2.9	69
106	Efficacy of inactivated swine influenza virus vaccines against the 2009 A/H1N1 influenza virus in pigs. Vaccine, 2010, 28, 2782-2787.	3.8	82
107	Absence of 2009 Pandemic H1N1 Influenza A Virus in Fresh Pork. PLoS ONE, 2009, 4, e8367.	2.5	23
108	Characterization of an influenza A virus isolated from pigs during an outbreak of respiratory disease in swine and people during a county fair in the United States. Veterinary Microbiology, 2009, 137, 51-59.	1.9	113

#	Article	IF	CITATIONS
109	Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes, 2009, 39, 176-185.	1.6	157
110	Swine influenza matrix 2 (M2) protein contributes to protection against infection with different H1 swine influenza virus (SIV) isolates. Vaccine, 2009, 28, 523-531.	3.8	39
111	Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine. Veterinary Microbiology, 2008, 126, 310-323.	1.9	128
112	Chapter 3 Swine Influenza Viruses. Advances in Virus Research, 2008, 72, 127-154.	2.1	324
113	Identification of H2N3 influenza A viruses from swine in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20949-20954.	7.1	198
114	Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine. Vaccine, 2007, 25, 7999-8009.	3.8	122
115	Novel Swine Influenza Virus Subtype H3N1, United States. Emerging Infectious Diseases, 2006, 12, 787-794.	4.3	79
116	Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States. Veterinary Microbiology, 2006, 118, 212-222.	1.9	114
117	Vaccination of Pigs against Swine Influenza Viruses by Using an NS1-Truncated Modified Live-Virus Vaccine. Journal of Virology, 2006, 80, 11009-11018.	3.4	164