Seth A Jacobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4766678/publications.pdf

Version: 2024-02-01

45 2,984 26 papers citations h-index

53 53 53 2508 all docs docs citations times ranked citing authors

44

g-index

#	Article	IF	CITATIONS
1	Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus, 2015, 248, 89-108.	2.5	328
2	Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 2016, 351, 493-496.	12.6	203
3	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	27.8	191
4	The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. lcarus, 2015, 258, 418-429.	2.5	191
5	The timeline of the lunar bombardment: Revisited. Icarus, 2018, 305, 262-276.	2.5	186
6	Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems. Icarus, 2011, 214, 161-178.	2.5	179
7	Formation of asteroid pairs by rotational fission. Nature, 2010, 466, 1085-1088.	27.8	171
8	Fossilized condensation lines in the Solar System protoplanetary disk. Icarus, 2016, 267, 368-376.	2.5	152
9	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2019, 627, A83.	5.1	149
10	Formation of planetary systems by pebble accretion and migration: growth of gas giants. Astronomy and Astrophysics, 2019, 623, A88.	5.1	117
11	Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation. Science, 2016, 353, 1141-1144.	12.6	95
12	Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130174.	3.4	92
13	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	5.1	85
14	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	8.1	76
15	Formation, stratification, and mixing of the cores of Earth and Venus. Earth and Planetary Science Letters, 2017, 474, 375-386.	4.4	63
16	Post-main-sequence debris from rotation-induced YORP break-up of small bodies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2794-2799.	4.4	59
17	LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS. Astrophysical Journal Letters, 2011, 736, L19.	8.3	55
18	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	4.4	46

#	Article	IF	CITATIONS
19	Effect of rotational disruption on the sizeâ€"frequency distribution of the Main Belt asteroid population. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L95-L99.	3.3	35
20	The binary near-Earth Asteroid (175706) 1996 FG3 — An observational constraint on its orbital evolution. Icarus, 2015, 245, 56-63.	2.5	35
21	Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth and Planetary Science Letters, 2020, 538, 116220.	4.4	33
22	The excited spin state of Dimorphos resulting from the DART impact. Icarus, 2021, 370, 114624.	2.5	33
23	Early Solar System instability triggered by dispersal of the gaseous disk. Nature, 2022, 604, 643-646.	27.8	33
24	The formation of striae within cometary dust tails by a sublimation-driven YORP-like effect. Icarus, 2016, 264, 160-171.	2.5	32
25	Chemical diversity of super-Earths as a consequence of formation. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4910-4924.	4.4	32
26	Impact-induced melting during accretion of the Earth. Progress in Earth and Planetary Science, 2016, 3,	3.0	31
27	FORMATION OF THE WIDE ASYNCHRONOUS BINARY ASTEROID POPULATION. Astrophysical Journal, 2014, 780, 60.	4.5	27
28	Scaling laws for the geometry of an impact-induced magma ocean. Earth and Planetary Science Letters, 2021, 568, 116983.	4.4	25
29	Formation of compact systems of super-Earths via dynamical instabilities and giant impacts. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5595-5620.	4.4	24
30	Predictions for the Dynamical States of the Didymos System before and after the Planned DART Impact. Planetary Science Journal, 2022, 3, 157.	3.6	23
31	A Martian origin for the Mars Trojan asteroids. Nature Astronomy, 2017, 1, .	10.1	19
32	Stochastic accretion of the Earth. Nature Astronomy, 2022, 6, 951-960.	10.1	16
33	Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis. Icarus, 2016, 277, 381-394.	2.5	15
34	How Sublimation Delays the Onset of Dusty Debris Disk Formation around White Dwarf Stars. Astrophysical Journal Letters, 2021, 913, L31.	8.3	14
35	Metal–silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth. Geochimica Et Cosmochimica Acta, 2021, 293, 40-69.	3.9	13
36	Formation and Evolution of Binary Asteroids. , 2015, , .		13

#	Article	IF	CITATIONS
37	The â€breaking the chains†migration model for super-Earth formation: the effect of collisional fragmentation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2856-2868.	4.4	13
38	Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution. Earth and Planetary Science Letters, 2019, 522, 210-218.	4.4	11
39	The Effect of Inefficient Accretion on Planetary Differentiation. Planetary Science Journal, 2021, 2, 93.	3.6	11
40	Population control of Mars Trojans by the Yarkovsky & Egrecation Control of Mars Trojans by the Yarkov	2.5	10
41	Quantitative estimates of impact induced crustal erosion during accretion and its influence on the Sm/Nd ratio of the Earth. Icarus, 2021, 363, 114412.	2.5	8
42	Barrel Instability in Binary Asteroids. Planetary Science Journal, 2021, 2, 231.	3.6	8
43	Small asteroid system evolution. Proceedings of the International Astronomical Union, 2014, 9, 108-117.	0.0	2
44	Multiple origins of asteroid pairs. Proceedings of the International Astronomical Union, 2015, 10, 55-65.	0.0	0
45	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	O