Gerd Walz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4765735/publications.pdf

Version: 2024-02-01

76031 49824 8,792 109 42 91 citations h-index g-index papers 112 112 112 9988 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Corpuscles of Stannius development requires FGF signaling. Developmental Biology, 2022, 481, 160-171.	0.9	4
2	CDC42 controlled apical-basal polarity regulates intestinal stem cell to transit amplifying cell fate transition via YAP-EGF-mTOR signaling. Cell Reports, 2022, 38, 110009.	2.9	17
3	Impact of Cyclophosphamide and Glucocorticoid Therapy in IgA Nephropathy - A Single-Center Retrospective Analysis. Kidney360, 2022, 3, 10.34067/KID.0006702021.	0.9	4
4	Inhibition of endoplasmic reticulum stress signaling rescues cytotoxicity of human apolipoprotein-L1 risk variants in Drosophila. Kidney International, 2022, 101, 1216-1231.	2.6	15
5	α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2022, 33, 786-808.	3.0	15
6	Scaffold polarity proteins Par3A and Par3B share redundant functions while Par3B acts independent of atypical protein kinase C/Par6 in podocytes to maintain the kidney filtration barrier. Kidney International, 2022, 101, 733-751.	2.6	7
7	Microridge-like structures anchor motile cilia. Nature Communications, 2022, 13, 2056.	5.8	13
8	Control of Directed Cell Migration after Tubular Cell Injury by Nucleotide Signaling. International Journal of Molecular Sciences, 2022, 23, 7870.	1.8	1
9	Long-term Follow-up of ABO-Incompatible Kidney Transplantation in Freiburg, Germany: A Single-Center Outcome Report. Transplantation Proceedings, 2021, 53, 848-855.	0.3	5
10	SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. Journal of the American Society of Nephrology: JASN, 2021, 32, 563-579.	3.0	18
11	EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Reports, 2021, 34, 108883.	2.9	19
12	Urine Metabolite Levels, Adverse Kidney Outcomes, and Mortality in CKD Patients: A Metabolome-wide Association Study. American Journal of Kidney Diseases, 2021, 78, 669-677.e1.	2.1	22
13	Ruptured Intrarenal Arterial Aneurysm in a Patient With Granulomatosis With Polyangiitis. Journal of Rheumatology, 2021, 48, 615-615.	1.0	0
14	Single-cell mRNA profiling reveals changes in solute carrier expression and suggests a metabolic switch during zebrafish pronephros development. American Journal of Physiology - Renal Physiology, 2021, 320, F826-F837.	1.3	11
15	Therapy with lopinavir/ritonavir and hydroxychloroquine is associated with acute kidney injury in COVID-19 patients. PLoS ONE, 2021, 16, e0249760.	1.1	9
16	Risk Factors and Management of Leukopenia After Kidney Transplantation: A Single-Center Experience. Transplantation Proceedings, 2021, 53, 1589-1598.	0.3	3
17	A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells, 2021, 10, 1509.	1.8	7
18	VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Scientific Reports, 2021, 11, 14827.	1.6	13

#	Article	IF	CITATIONS
19	Development of Nivolumab/Ipilimumab-Associated Autoimmune Nephritis during Steroid Therapy. Case Reports in Nephrology and Dialysis, 2021, 11, 270-274.	0.3	6
20	Divergent function of polycystin 1 and polycystin 2 in cell size regulation. Biochemical and Biophysical Research Communications, 2020, 521, 290-295.	1.0	12
21	Nephronophthisis gene products display RNA-binding properties and are recruited to stress granules. Scientific Reports, 2020, 10, 15954.	1.6	13
22	Comparison of different anticoagulation strategies for renal replacement therapy in critically ill patients with COVID-19: a cohort study. BMC Nephrology, 2020, 21, 486.	0.8	20
23	Subcutaneous Enoxaparin Safely Facilitates Bedside Sustained Low-Efficiency Hemodialysis in Hypercoagulopathic Coronavirus Disease 2019 Patients—A Proof-of-Principle Trial. , 2020, 2, e0155.		3
24	A molecular mechanism explaining albuminuria in kidney disease. Nature Metabolism, 2020, 2, 461-474.	5.1	99
25	The acetyltransferase p300 regulates NRF2 stability and localization. Biochemical and Biophysical Research Communications, 2020, 524, 895-902.	1.0	37
26	Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nature Genetics, 2020, 52, 167-176.	9.4	101
27	A Localized Scaffold for cGMP Increase Is Required for Apical Dendrite Development. Cell Reports, 2020, 31, 107519.	2.9	6
28	Clinical decision making in small non-functioning VHL-related incidentalomas. Endocrine Connections, 2020, 9, 834-844.	0.8	1
29	GFR estimation in lenalidomide treatment of multiple myeloma patients: a prospective cohort study. Clinical and Experimental Nephrology, 2019, 23, 199-206.	0.7	1
30	CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Experimental Gerontology, 2019, 126, 110690.	1.2	18
31	Growth characteristics and therapeutic decision markers in von Hippel-Lindau disease patients with renal cell carcinoma. Orphanet Journal of Rare Diseases, 2019, 14, 235.	1.2	13
32	Impact of Diabetic Stress Conditions on Renal Cell Metabolome. Cells, 2019, 8, 1141.	1.8	6
33	Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics, 2019, 15, 71.	1.4	2
34	TBC1D8B Mutations Implicate RAB11-Dependent Vesicular Trafficking in the Pathogenesis of Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2019, 30, 2338-2353.	3.0	25
35	Primary decidual zone formation requires Scribble for pregnancy success in mice. Nature Communications, 2019, 10, 5425.	5.8	42
36	Longâ€Term Therapeutic Plasma Exchange Therapy as Effective Approach to Refractory Primary Acquired Pregnancyâ€Related Thrombocytopenic Purpura. Therapeutic Apheresis and Dialysis, 2019, 23, 99-100.	0.4	0

#	Article	IF	Citations
37	Kidney embolization induces prompt organ response in a 86â€yearâ€old patient with MGRSâ€related ALâ€amyloidosis. Hemodialysis International, 2019, 23, E59-E64.	0.4	4
38	Metabolic characterization of directly reprogrammed renal tubular epithelial cells (iRECs). Scientific Reports, 2018, 8, 3878.	1.6	16
39	CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in <i>C. elegans</i> Oncotarget, 2018, 9, 9581-9595.	0.8	7
40	CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nature Communications, 2018, 9, 3660.	5.8	39
41	Metabolic Phenotyping of Anks3 Depletion in mIMCD-3 cells - a Putative Nephronophthisis Candidate. Scientific Reports, 2018, 8, 9022.	1.6	20
42	The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biology, 2018, 16, e2005651.	2.6	18
43	The nucleoside-diphosphate kinase NME3 associates with nephronophthisis proteins and is required for ciliary function during renal development. Journal of Biological Chemistry, 2018, 293, 15243-15255.	1.6	13
44	Diverging impact of cell fate determinants Scrib and Llgl1 on adhesion and migration of hematopoietic stem cells. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1933-1944.	1.2	2
45	Ciliaâ€localized <scp>LKB</scp> 1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO Journal, 2018, 37, .	3.5	78
46	Targeting mTOR Signaling Can Prevent the Progression of FSGS. Journal of the American Society of Nephrology: JASN, 2017, 28, 2144-2157.	3.0	57
47	Role of primary cilia in non-dividing and post-mitotic cells. Cell and Tissue Research, 2017, 369, 11-25.	1.5	31
48	Associations between genetic risk variants for kidney diseases and kidney disease etiology. Scientific Reports, 2017, 7, 13944.	1.6	16
49	Successful Management of Calciphylaxis in a Kidney Transplant Patient. Transplantation Direct, 2016, 2, e70.	0.8	8
50	ANKS3 is mutated in a family with autosomal recessive laterality defect. Human Genetics, 2016, 135, 1233-1239.	1.8	17
51	Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nature Cell Biology, 2016, 18, 1269-1280.	4.6	113
52	Dealing with prognostic signature instability: a strategy illustrated for cardiovascular events in patients with end-stage renal disease. BMC Medical Genomics, 2016, 9, 43.	0.7	0
53	A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight, 2016, 1 , .	2.3	69
54	Cell cycle controls stress response and longevity in C. elegans. Aging, 2016, 8, 2100-2126.	1.4	8

#	Article	IF	CITATIONS
55	SUMOylation Blocks the Ubiquitin-Mediated Degradation of the Nephronophthisis Gene Product Glis2/NPHP7. PLoS ONE, 2015, 10, e0130275.	1.1	15
56	The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. Journal of Cell Biology, 2015, 211, 963-973.	2.3	48
57	Anks3 interacts with nephronophthisis proteins and is required for normal renal development. Kidney International, 2015, 87, 1191-1200.	2.6	30
58	The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development (Cambridge), 2015, 142, 174-184.	1.2	45
59	TSC1 Activates TGF-Î ² -Smad2/3 Signaling in Growth Arrest and Epithelial-to-Mesenchymal Transition. Developmental Cell, 2015, 32, 617-630.	3.1	54
60	Secreted frizzled-related protein 4 predicts progression of autosomal dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2015, 31, gfv077.	0.4	9
61	Anks3 alters the sub-cellular localization of the Nek7 kinase. Biochemical and Biophysical Research Communications, 2015, 464, 901-907.	1.0	17
62	Caenorhabditis elegans OSM-11 signaling regulates SKN-1/Nrf during embryonic development and adult longevity and stress response. Developmental Biology, 2015, 400, 118-131.	0.9	22
63	Effect of everolimus on polycystic liver volume in autosomal dominant polycystic kidney disease. Clinical and Experimental Nephrology, 2015, 19, 757-758.	0.7	0
64	Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet, The, 2015, 385, 1993-2002.	6.3	227
65	The Treatment of Autosomal Dominant Polycystic Kidney Disease. Deutsches Ärzteblatt International, 2015, 112, 884-90.	0.6	12
66	mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2817-26.	3.3	82
67	Interaction with the Bardet-Biedl Gene Product TRIM32/BBS11 Modifies the Half-life and Localization of Glis2/NPHP7. Journal of Biological Chemistry, 2014, 289, 8390-8401.	1.6	17
68	Calciphylaxis. Lancet, The, 2014, 383, 1067.	6.3	18
69	ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nature Genetics, 2013, 45, 951-956.	9.4	183
70	Planar cell polarity (PCP) and Wnt signaling in renal disease. Drug Discovery Today Disease Mechanisms, 2013, 10, e159-e166.	0.8	0
71	N-WASP Is Required for Stabilization of Podocyte Foot Processes. Journal of the American Society of Nephrology: JASN, 2013, 24, 713-721.	3.0	56
72	A Complex of BBS1 and NPHP7 Is Required for Cilia Motility in Zebrafish. PLoS ONE, 2013, 8, e72549.	1.1	21

#	Article	IF	CITATIONS
73	Reversible pulmonary hypertension in a kidney transplant with patent A-V fistula. CKJ: Clinical Kidney Journal, 2012, 5, 347-349.	1.4	5
74	The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrology Dialysis Transplantation, 2012, 27, 1454-1460.	0.4	127
75	Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling. Cell, 2012, 150, 533-548.	13.5	347
76	YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation. PLoS ONE, 2012, 7, e35735.	1.1	35
77	Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance. PLoS ONE, 2012, 7, e36705.	1.1	50
78	mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppression. Kidney International, 2011, 79, 502-511.	2.6	124
79	Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Human Molecular Genetics, 2011, 20, 3119-3128.	1.4	48
80	Nephrocystin-4 Regulates Pyk2-induced Tyrosine Phosphorylation of Nephrocystin-1 to Control Targeting to Monocilia. Journal of Biological Chemistry, 2011, 286, 14237-14245.	1.6	22
81	Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nature Cell Biology, 2010, 12, 1115-1122.	4.6	330
82	Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20388-20393.	3.3	50
83	Wnt signaling and rejuvenation of the adult kidney. Nephrology Dialysis Transplantation, 2010, 25, 34-36.	0.4	3
84	The retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1) links RPGR to the nephronophthisis protein network. Kidney International, 2010, 77, 891-896.	2.6	17
85	Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. New England Journal of Medicine, 2010, 363, 830-840.	13.9	517
86	Identification of a Protein Kinase C-dependent phosphorylation site involved in sensitization of TRPV4 channel. Biochemical and Biophysical Research Communications, 2010, 391, 1721-1725.	1.0	61
87	Regulation of ciliary polarity by the APC/C. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17799-17804.	3.3	49
88	Tyrosine Phosphorylation Modulates the Activity of TRPV4 in Response to Defined Stimuli. Journal of Biological Chemistry, 2009, 284, 2923-2933.	1.6	87
89	A short carboxy-terminal domain of polycystin-1 reorganizes the microtubular network and the endoplasmic reticulum. Experimental Cell Research, 2009, 315, 1157-1170.	1.2	7
90	TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO Journal, 2009, 28, 490-499.	3 . 5	98

#	Article	IF	Citations
91	Loss of Nephrocystin-3 Function Can Cause Embryonic Lethality,ÂMeckel-Gruber-like Syndrome, Situs Inversus, and Renal-Hepatic-Pancreatic Dysplasia. American Journal of Human Genetics, 2008, 82, 959-970.	2.6	294
92	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 2008, 182, 437-447.	2.3	349
93	The Subcellular Localization of TRPP2 Modulates Its Function. Journal of the American Society of Nephrology: JASN, 2008, 19, 1342-1351.	3.0	48
94	Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Human Molecular Genetics, 2008, 17, 3655-3662.	1.4	72
95	OS-9 Regulates the Transit and Polyubiquitination of TRPV4 in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2007, 282, 36561-36570.	1.6	63
96	Wnt Signaling in Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 1389-1398.	3.0	87
97	The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5466-5471.	3.3	715
98	The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681.	9.4	535
99	The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO Journal, 2006, 25, 5659-5669.	3.5	79
100	The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. Journal of Cell Biology, 2006, 175, 547-554.	2.3	165
101	Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genetics, 2005, 37, 537-543.	9.4	680
102	Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO Journal, 2005, 24, 705-716.	3.5	237
103	Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO Journal, 2005, 24, 4415-4424.	3.5	92
104	Subcellular localization and trafficking of polycystins. Pflugers Archiv European Journal of Physiology, 2005, 451, 286-293.	1.3	61
105	NEPH2 Is Located at the Glomerular Slit Diaphragm, Interacts with Nephrin and Is Cleaved from Podocytes by Metalloproteinases. Journal of the American Society of Nephrology: JASN, 2005, 16, 1693-1702.	3.0	77
106	Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nature Genetics, 2003, 34, 455-459.	9.4	345
107	Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nature Genetics, 2003, 34, 413-420.	9.4	582
108	Interaction with Podocin Facilitates Nephrin Signaling. Journal of Biological Chemistry, 2001, 276, 41543-41546.	1.6	304

#	Article	IF	CITATIONS
109	Evaluation of Deceased Donor Kidney Transplantation in the Eurotransplant Senior Program in Comparison to Standard Allocation. Annals of Transplantation, 0, 27, .	0.5	3