
Yifu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764964/publications.pdf Version: 2024-02-01

ΥΙΕΊΙ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Facile synthesis and electrochemical performance of lithium-rich layered oxides with stable hierarchical structure through HEPES-assisted co-precipitation method. Electrochimica Acta, 2022, 401, 139485.	5.2	6
2	Doping and Coating Synergy to Improve the Rate Capability and Cycling Stability of Lithium-Rich Cathode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 2410-2423.	3.1	7
3	In Situ Reconstruction of the Spinel Interface on a Li-Rich Layered Cathode Material with Enhanced Electrochemical Performances through HEPES and Heat Treatment Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6165-6180.	6.7	10
4	Sodium alginate reinforced 3D lithiophilic Ag–Cu framework for ultrastable Li deposition. Journal of Power Sources, 2022, 543, 231819.	7.8	1
5	HEPES-Assisted Co-Precipitation Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ : Tuning the Mn ³⁺ Content and Electrochemical Properties by pH Values. Journal of the Electrochemical Society, 2021, 168, 100544.	2.9	5
6	Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode. Journal of Power Sources, 2020, 472, 228520.	7.8	58
7	A Double-Layer Artificial SEI Film Fabricated by Controlled Electrochemical Reduction of LiODFB-FEC Based Electrolyte for Dendrite-Free Lithium Meal Anode. Journal of the Electrochemical Society, 2020, 167, 160535.	2.9	10
8	A dual-layered artificial solid electrolyte interphase formed by controlled electrochemical reduction of LiTFSI/DME-LiNO3 for dendrite-free lithium metal anode. Electrochimica Acta, 2019, 306, 407-419.	5.2	48
9	Surface Modification of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Cathode Material with Al ₂ O ₃ /SiO ₂ Composite for Lithium-Ion Batteries. Iournal of the Electrochemical Society. 2019. 166. A863-A872.	2.9	29
10	Flexible Artificial Solid Electrolyte Interphase Formed by 1,3-Dioxolane Oxidation and Polymerization for Metallic Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 2479-2489.	8.0	40
11	Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Research, 2019, 12, 217-223.	10.4	61
12	Enhanced cycleability and dendrite-free lithium deposition by addition of sodium ion in electrolyte for lithium metal batteries. Electrochimica Acta, 2018, 271, 617-623.	5.2	21
13	Carbon-Polytetrahydrofuran Double-Coated Na ₃ V ₂ (PO ₄) ₂ F ₃ Submicron-Composite as High-Energy/Power Cathode Material for Sodium Metal Battery. Journal of the Electrochemical Society. 2018. 165. A746-A756.	2.9	36
14	Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. Journal of Membrane Science, 2018, 547, 1-10.	8.2	178
15	Compatibility of lithium oxalyldifluoroborate with lithium metal anode in rechargeable batteries. Electrochimica Acta, 2018, 259, 534-541.	5.2	13
16	Understanding the electrochemical mechanism of high sodium selective material Na3V2(PO4)2F3 in Li+/Na+ dual-ion batteries. Electrochimica Acta, 2018, 292, 234-246.	5.2	23
17	Nano-sized oxide filled composite PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium and sodium batteries. Solid State Ionics, 2018, 326, 136-144.	2.7	41
18	Alkyldimethylbetaine-Assisted Development of Hollow Urchinlike CuO Microspheres and Application for High-Performance Battery Anodes. ACS Omega, 2018, 3, 13146-13153.	3.5	5

Yifu Yang

#	Article	IF	CITATIONS
19	The Application of Graphite in the Preparation of Cathode Material Li 3 V 2 (PO 4) 3 /C. ChemistrySelect, 2018, 3, 6328-6333.	1.5	1
20	Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 13694-13702.	8.0	331
21	Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode. Physical Chemistry Chemical Physics, 2017, 19, 28772-28780.	2.8	18
22	A study on capacity and power fading characteristics of Li(Ni1/3Co1/3Mn1/3)O2-based lithium-ion batteries. Ionics, 2016, 22, 2027-2036.	2.4	7
23	Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries. Electrochimica Acta, 2016, 212, 758-766.	5.2	31
24	Improvement of the rate performance of hydrogen storage alloys by heat treatments in Ar and H2/Ar atmosphere for high-power nickel–metal hydride batteries. Electrochimica Acta, 2015, 174, 164-171.	5.2	10
25	Substrate effects on Li ⁺ electrodeposition in Li secondary batteries with a competitive kinetics model. Physical Chemistry Chemical Physics, 2015, 17, 20398-20406.	2.8	33
26	Enhancement of the lithium cycling capability using Li–Zn alloy substrate for lithium metal batteries. Electrochimica Acta, 2014, 137, 476-483.	5.2	21
27	Synthesis and electrochemical properties of polyhedron-shaped Li3V2â^'xSnx(PO4)3 as cathode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 98-102.	3.8	22
28	One-pot synthesis of NiFe2O4/C composite as an anode material for lithium-ion batteries. Journal of Power Sources, 2013, 244, 610-613.	7.8	62
29	Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics, 2012, 217, 27-33.	2.7	54
30	High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochimica Acta, 2011, 56, 9433-9438.	5.2	166
31	Synthesis and electrochemical characterization of LiNi0.5Mn1.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent. Electrochimica Acta, 2011, 56, 5934-5939.	5.2	37
32	Activation behaviour of the Ni/MH batteries electrodic material Ni(OH)2 by single particle microelectrode technique. International Journal of Hydrogen Energy, 2011, 36, 8560-8569.	7.1	11
33	Differences in the effects of Co and CoO on the performance of Ni(OH)2 electrode in Ni/MH power battery. Journal of Power Sources, 2011, 196, 495-503.	7.8	34
34	Cation-exchange induced high power electrochemical properties of core–shell Ni(OH)2@CoOOH. Journal of Power Sources, 2011, 196, 488-494.	7.8	34
35	Method for preparing a novel type of Pt–carbon fiber disk ultramicroelectrode. Ionics, 2010, 16, 45-50.	2.4	5
36	Synthesis of high power type LiMn1.5Ni0.5O4 by optimizing its preparation conditions. Journal of Power Sources, 2010, 195, 4322-4326.	7.8	51

Yifu Yang

#	Article	IF	CITATIONS
37	Single-particle investigation on the activation process of a hydrogen storage alloy. International Journal of Hydrogen Energy, 2010, 35, 1273-1279.	7.1	3
38	Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method. Solid State Communications, 2010, 150, 81-85.	1.9	82
39	Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process. Materials Research Bulletin, 2009, 44, 2139-2142.	5.2	33
40	Comparing the anodic reactions of Ni and Ni–P amorphous alloy in alkaline solution. Corrosion Science, 2009, 51, 1907-1913.	6.6	29
41	Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2009, 481, 590-594.	5.5	57
42	The performances of La1â^'xCexNi5 (0â‰ജâ‰聲) hydrogen storage alloys studied by powder microelectrode. Journal of Alloys and Compounds, 2008, 453, 79-86.	5.5	22
43	Tunable Electrochemical Properties Brought About by Partial Cation Exchange in Hydrotalcite-Like Niâ^'Co/Coâ^'Ni Hydroxide Nanosheets. Journal of Physical Chemistry C, 2008, 112, 17471-17477.	3.1	27
44	Rapid evaluation of LaNi5â^'xMnx (x=0.1–0.5) by X-ray diffraction and powder microelectrode (PME) techniques. Journal of Alloys and Compounds, 2007, 429, 285-291.	5.5	14
45	Comparative study of LaNi4.7M0.3LaNi4.7M0.3 (M=Ni,Co,Mn,Al) by powder microelectrode technique. International Journal of Hydrogen Energy, 2007, 32, 1905-1910.	7.1	36
46	Quantitative study of pH change during LaNi5â^'xAlx (x=0, 0.3) discharge process by SECM. Electrochimica Acta, 2007, 52, 4231-4238.	5.2	3
47	Study on the anodic reaction of Ni in an alkaline solution by transient pH detection based on scanning electrochemical microscopy (SECM). Surface and Interface Analysis, 2007, 39, 877-884.	1.8	10
48	Electrochemical characterization of LaNi5â^'xAlx (x=0.1–0.5) in the absence of additives. Journal of Power Sources, 2006, 161, 1435-1442.	7.8	35
49	Study on the surface reaction of LaNi5 alloy during discharge process in KOH solution. Electrochimica Acta, 2006, 52, 68-74.	5.2	5
50	Electroreduction-Oxidation and Quantitative Determination of CO ₂ on A New SPE-Based System. Journal of Applied Electrochemistry, 2004, 34, 757-762.	2.9	5