
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatio-temporal regulation of lignification. Advances in Botanical Research, 2022, , 271-316.	1.1	6
2	Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnology for Biofuels, 2021, 14, 43.	6.2	10
3	PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen. Cells, 2021, 10, 1971.	4.1	11
4	Fluorescence Lifetime Imaging as an <i>In Situ</i> and Label-Free Readout for the Chemical Composition of Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 17381-17392.	6.7	9
5	PIRIN2 suppresses Sâ€ŧype lignin accumulation in a noncellâ€autonomous manner in Arabidopsis xylem elements. New Phytologist, 2020, 225, 1923-1935.	7.3	12
6	ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. Frontiers in Plant Science, 2020, 11, 601858.	3.6	3
7	The chromatin-modifying protein HUB2 is involved in the regulation of lignin composition in xylem vessels. Journal of Experimental Botany, 2020, 71, 5484-5494.	4.8	4
8	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
9	<i>ETHYLENE RESPONSE FACTOR 115</i> integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in <i>Arabidopsis</i> . New Phytologist, 2020, 228, 1611-1626.	7.3	43
10	Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Current Biology, 2020, 30, 455-464.e7.	3.9	34
11	Ethylene Signaling Is Required for Fully Functional Tension Wood in Hybrid Aspen. Frontiers in Plant Science, 2019, 10, 1101.	3.6	14
12	An <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor <scp>ERF</scp> 139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist, 2019, 224, 1585-1599.	7.3	49
13	Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. Journal of Experimental Botany, 2019, 70, 2199-2210.	4.8	11
14	Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. Plant Physiology, 2018, 176, 2851-2870.	4.8	40
15	The function of two type II metacaspases in woody tissues of <i>Populus</i> trees. New Phytologist, 2018, 217, 1551-1565.	7.3	30
16	A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees. BMC Genomics, 2018, 19, 11.	2.8	25
17	Ethylene-Related Gene Expression Networks in Wood Formation. Frontiers in Plant Science, 2018, 9, 272.	3.6	48
18	Contribution of cellular autolysis to tissular functions during plant development. Current Opinion in Plant Biology, 2017, 35, 124-130.	7.1	13

#	Article	IF	CITATIONS
19	Metacaspases versus caspases in development and cell fate regulation. Cell Death and Differentiation, 2017, 24, 1314-1325.	11.2	75
20	NorWood: a gene expression resource for evoâ€devo studies of conifer wood development. New Phytologist, 2017, 216, 482-494.	7.3	71
21	Quick Histochemical Staining Methods to Detect Cell Death in Xylem Elements of Plant Tissues. Methods in Molecular Biology, 2017, 1544, 27-36.	0.9	4
22	A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Scientific Reports, 2017, 7, 15798.	3.3	35
23	AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in <i>Populus tremula</i> . Plant Cell, 2017, 29, 1585-1604.	6.6	219
24	METACASPASE9 modulates autophagy to confine cell death to the target cells during <i>Arabidopsis</i> vascular xylem differentiation. Biology Open, 2016, 5, 122-129.	1.2	56
25	Life Beyond Death: The Formation of Xylem Sap Conduits. , 2015, , 55-76.		6
26	A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 2015, 35, 432-443.	7.0	96
27	<scp>GRIM REAPER</scp> peptide binds to receptor kinase <scp>PRK</scp> 5 to trigger cell death in <i>Arabidopsis</i> . EMBO Journal, 2015, 34, 55-66.	7.8	83
28	Cooperative lignification of xylem tracheary elements. Plant Signaling and Behavior, 2015, 10, e1003753.	2.4	20
29	<scp>PIRIN</scp> 2 stabilizes cysteine protease <scp>XCP</scp> 2 and increases susceptibility to the vascular pathogen <i>Ralstonia solanacearum</i> in Arabidopsis. Plant Journal, 2014, 79, 1009-1019.	5.7	41
30	Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. Journal of Experimental Botany, 2014, 65, 1313-1321.	4.8	96
31	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	27.8	1,303
32	<i>Post mortem</i> function of <scp>A</scp> t <scp>MC</scp> 9 in xylem vessel elements. New Phytologist, 2013, 200, 498-510.	7.3	117
33	Thermospermine levels are controlled by an auxinâ€dependent feedback loop mechanism in <i>Populus</i> xylem. Plant Journal, 2013, 75, 685-698.	5.7	57
34	Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in <i>Zinnia elegans</i> Â Â. Plant Cell, 2013, 25, 1314-1328.	6.6	158
35	Xylem cell death: emerging understanding of regulation and function. Journal of Experimental Botany, 2012, 63, 1081-1094.	4.8	179
36	Ethylene stimulates tracheary element differentiation in <i>Zinnia elegans</i> cell cultures. New Phytologist, 2011, 190, 138-149.	7.3	69

#	Article	IF	CITATIONS
37	Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 2010, 48, 534-539.	5.8	88
38	The Control of Autumn Senescence in European Aspen Â. Plant Physiology, 2009, 149, 1982-1991.	4.8	239
39	A unique program for cell death in xylem fibers of <i>Populus</i> stem. Plant Journal, 2009, 58, 260-274.	5.7	147
40	Complex phenotypic profiles leading to ozone sensitivity in <i>Arabidopsis thaliana</i> mutants. Plant, Cell and Environment, 2008, 31, 1237-1249.	5.7	69
41	ACAULIS5 controls <i>Arabidopsis</i> xylem specification through the prevention of premature cell death. Development (Cambridge), 2008, 135, 2573-2582.	2.5	140
42	Populus genomics as a tool to unravel ethylene-dependent wood formation. , 2007, , 159-160.		0
43	The different fates of mitochondria and chloroplasts during darkâ€induced senescence in <i>Arabidopsis</i> leaves. Plant, Cell and Environment, 2007, 30, 1523-1534.	5.7	114
44	Unravelling ethylene biosynthesis and its role during tracheary element formation in Zinnia elegans. , 2007, , 147-149.		5
45	Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant Journal, 2006, 46, 628-640.	5.7	108
46	Ozone-Induced Programmed Cell Death in the Arabidopsis radical-induced cell death1 Mutant. Plant Physiology, 2005, 137, 1092-1104.	4.8	178
47	A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology, 2005, 6, R34.	9.6	71
48	Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell, 2004, 16, 1925-1937.	6.6	217
49	Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant Journal, 2004, 39, 59-69.	5.7	109
50	Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch. Plant Physiology, 2003, 132, 185-195.	4.8	96
51	Ozone-Induced Cell Death. Tree Physiology, 2001, , 81-92.	2.5	0
52	Ozone-Sensitive Arabidopsis rcd1 Mutant Reveals Opposite Roles for Ethylene and Jasmonate Signaling Pathways in Regulating Superoxide-Dependent Cell Death. Plant Cell, 2000, 12, 1849-1862.	6.6	491
53	Ozone-Sensitive Arabidopsis rcd1 Mutant Reveals Opposite Roles for Ethylene and Jasmonate Signaling Pathways in Regulating Superoxide-Dependent Cell Death. Plant Cell, 2000, 12, 1849.	6.6	49
54	Cambial-Region-Specific Expression of the Agrobacterium iaa Genes in Transgenic Aspen Visualized by a LinkeduidA Reporter Gene. Plant Physiology, 2000, 123, 531-542.	4.8	33

#	Article	IF	CITATIONS
55	Genetic Engineering of Wood Formation. Forestry Sciences, 2000, , 181-203.	0.4	2
56	Accurate and high resolution in situ hybridization analysis of gene expression in secondary stem tissues. Plant Journal, 1999, 19, 363-369.	5.7	37
57	A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, 1997, 115, 577-585.	4.8	249
58	The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiologia Plantarum, 1997, 100, 456-462.	5.2	35
59	The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiologia Plantarum, 1997, 100, 456-462.	5.2	4
60	Altered Growth and Wood Characteristics in Transgenic Hybrid Aspen Expressing Agrobacterium tumefaciens T-DNA Indoleacetic Acid-Biosynthetic Genes. Plant Physiology, 1995, 109, 1179-1189.	4.8	96
61	A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.). Plant Physiology, 1994, 106, 1511-1520.	4.8	74
62	Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots. Plant Physiology, 1994, 106, 469-476.	4.8	74
63	Growth patterns and endogenous indole-3-acetic acid concentrations in current-year coppice shoots and seedlings of two Betula species. Physiologia Plantarum, 1993, 88, 403-412.	5.2	23
64	Growth patterns and endogenous indole-3-acetic acid concentrations in current-year coppice shoots and seedlings of two Betula species. Physiologia Plantarum, 1993, 88, 403-412.	5.2	1
65	Arrested Leaf Abscission in the Non-Abscising Variety of Pubescent Birch: Developmental,Morphological and Hormonal Aspects. Journal of Experimental Botany, 1992, 43, 975-982.	4.8	29