Hannele Tuominen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764927/publications.pdf

Version: 2024-02-01

109321 5,905 65 35 citations h-index papers

123424 61 g-index

6906

citing authors

72 72 72 docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	27.8	1,303
2	Ozone-Sensitive Arabidopsis rcd1 Mutant Reveals Opposite Roles for Ethylene and Jasmonate Signaling Pathways in Regulating Superoxide-Dependent Cell Death. Plant Cell, 2000, 12, 1849-1862.	6.6	491
3	A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, 1997, 115, 577-585.	4.8	249
4	The Control of Autumn Senescence in European Aspen Â. Plant Physiology, 2009, 149, 1982-1991.	4.8	239
5	AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in <i>Populus tremula</i> Plant Cell, 2017, 29, 1585-1604.	6.6	219
6	Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses. Plant Cell, 2004, 16, 1925-1937.	6.6	217
7	Xylem cell death: emerging understanding of regulation and function. Journal of Experimental Botany, 2012, 63, 1081-1094.	4.8	179
8	Ozone-Induced Programmed Cell Death in the Arabidopsis radical-induced cell death1 Mutant. Plant Physiology, 2005, 137, 1092-1104.	4.8	178
9	Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in <i>Zinnia elegans</i> Ââ. Plant Cell, 2013, 25, 1314-1328.	6.6	158
10	A unique program for cell death in xylem fibers of <i>Populus</i> stem. Plant Journal, 2009, 58, 260-274.	5.7	147
11	ACAULIS5 controls <i>Arabidopsis</i> xylem specification through the prevention of premature cell death. Development (Cambridge), 2008, 135, 2573-2582.	2.5	140
12	<i>Post mortem</i> function of <scp>A</scp> t <scp>MC</scp> 9 in xylem vessel elements. New Phytologist, 2013, 200, 498-510.	7.3	117
13	The different fates of mitochondria and chloroplasts during darkâ€induced senescence in <i>Arabidopsis</i> leaves. Plant, Cell and Environment, 2007, 30, 1523-1534.	5 . 7	114
14	Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant Journal, 2004, 39, 59-69.	5.7	109
15	Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant Journal, 2006, 46, 628-640.	5.7	108
16	Altered Growth and Wood Characteristics in Transgenic Hybrid Aspen Expressing Agrobacterium tumefaciens T-DNA Indoleacetic Acid-Biosynthetic Genes. Plant Physiology, 1995, 109, 1179-1189.	4.8	96
17	Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch. Plant Physiology, 2003, 132, 185-195.	4.8	96
18	Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. Journal of Experimental Botany, 2014, 65, 1313-1321.	4.8	96

#	Article	IF	CITATIONS
19	A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 2015, 35, 432-443.	7.0	96
20	Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 2010, 48, 534-539.	5.8	88
21	<scp>GRIM REAPER</scp> peptide binds to receptor kinase <scp>PRK</scp> 5 to trigger cell death in <i>Arabidopsis</i> . EMBO Journal, 2015, 34, 55-66.	7.8	83
22	Metacaspases versus caspases in development and cell fate regulation. Cell Death and Differentiation, 2017, 24, 1314-1325.	11.2	75
23	A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.). Plant Physiology, 1994, 106, 1511-1520.	4.8	74
24	Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots. Plant Physiology, 1994, 106, 469-476.	4.8	74
25	A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology, 2005, 6, R34.	9.6	71
26	NorWood: a gene expression resource for evoâ€devo studies of conifer wood development. New Phytologist, 2017, 216, 482-494.	7.3	71
27	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
28	Complex phenotypic profiles leading to ozone sensitivity in <i>Arabidopsis thaliana</i> mutants. Plant, Cell and Environment, 2008, 31, 1237-1249.	5.7	69
29	Ethylene stimulates tracheary element differentiation in <i>Zinnia elegans</i> cell cultures. New Phytologist, 2011, 190, 138-149.	7.3	69
30	Thermospermine levels are controlled by an auxinâ€dependent feedback loop mechanism in <i>Populus</i> xylem. Plant Journal, 2013, 75, 685-698.	5.7	57
31	METACASPASE9 modulates autophagy to confine cell death to the target cells during <i>Arabidopsis</i> vascular xylem differentiation. Biology Open, 2016, 5, 122-129.	1.2	56
32	Ozone-Sensitive Arabidopsis rcd1 Mutant Reveals Opposite Roles for Ethylene and Jasmonate Signaling Pathways in Regulating Superoxide-Dependent Cell Death. Plant Cell, 2000, 12, 1849.	6.6	49
33	An <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor <scp>ERF</scp> 139 coordinates xylem cell expansion and secondary cell wall deposition. New Phytologist, 2019, 224, 1585-1599.	7.3	49
34	Ethylene-Related Gene Expression Networks in Wood Formation. Frontiers in Plant Science, 2018, 9, 272.	3.6	48
35	<i>ETHYLENE RESPONSE FACTOR $115 < i>$ integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in <i>Arabidopsis < i>. New Phytologist, 2020, 228, 1611-1626.</i></i>	7.3	43
36	<scp>PIRIN</scp> 2 stabilizes cysteine protease <scp>XCP</scp> 2 and increases susceptibility to the vascular pathogen <i>Ralstonia solanacearum</i> in Arabidopsis. Plant Journal, 2014, 79, 1009-1019.	5.7	41

3

#	Article	IF	CITATIONS
37	Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. Plant Physiology, 2018, 176, 2851-2870.	4.8	40
38	Accurate and high resolution in situ hybridization analysis of gene expression in secondary stem tissues. Plant Journal, 1999, 19, 363-369.	5.7	37
39	The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiologia Plantarum, 1997, 100, 456-462.	5.2	35
40	A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis. Scientific Reports, 2017, 7, 15798.	3.3	35
41	Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Current Biology, 2020, 30, 455-464.e7.	3.9	34
42	Cambial-Region-Specific Expression of the Agrobacterium iaa Genes in Transgenic Aspen Visualized by a LinkeduidA Reporter Gene. Plant Physiology, 2000, 123, 531-542.	4.8	33
43	The function of two type II metacaspases in woody tissues of <i>Populus</i> trees. New Phytologist, 2018, 217, 1551-1565.	7.3	30
44	Arrested Leaf Abscission in the Non-Abscising Variety of Pubescent Birch: Developmental, Morphological and Hormonal Aspects. Journal of Experimental Botany, 1992, 43, 975-982.	4.8	29
45	A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation ofâ€≀ â€≀â€≀Populusâ€≀â€≀ â€≀trees. BMC Genomics, 2018, 19, 11.	2.8	25
46	Growth patterns and endogenous indole-3-acetic acid concentrations in current-year coppice shoots and seedlings of two Betula species. Physiologia Plantarum, 1993, 88, 403-412.	5.2	23
47	Cooperative lignification of xylem tracheary elements. Plant Signaling and Behavior, 2015, 10, e1003753.	2.4	20
48	Ethylene Signaling Is Required for Fully Functional Tension Wood in Hybrid Aspen. Frontiers in Plant Science, 2019, 10, 1101.	3.6	14
49	Contribution of cellular autolysis to tissular functions during plant development. Current Opinion in Plant Biology, 2017, 35, 124-130.	7.1	13
50	PIRIN2 suppresses Sâ€type lignin accumulation in a noncellâ€autonomous manner in Arabidopsis xylem elements. New Phytologist, 2020, 225, 1923-1935.	7.3	12
51	Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. Journal of Experimental Botany, 2019, 70, 2199-2210.	4.8	11
52	PopulusPtERF85 Balances Xylem Cell Expansion and Secondary Cell Wall Formation in Hybrid Aspen. Cells, 2021, 10, 1971.	4.1	11
53	Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Biotechnology for Biofuels, 2021, 14, 43.	6.2	10
54	Fluorescence Lifetime Imaging as an <i>In Situ</i> and Label-Free Readout for the Chemical Composition of Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 17381-17392.	6.7	9

#	Article	IF	CITATIONS
55	Life Beyond Death: The Formation of Xylem Sap Conduits. , 2015, , 55-76.		6
56	Spatio-temporal regulation of lignification. Advances in Botanical Research, 2022, , 271-316.	1.1	6
57	Unravelling ethylene biosynthesis and its role during tracheary element formation in Zinnia elegans. , 2007, , $147-149$.		5
58	Quick Histochemical Staining Methods to Detect Cell Death in Xylem Elements of Plant Tissues. Methods in Molecular Biology, 2017, 1544, 27-36.	0.9	4
59	The chromatin-modifying protein HUB2 is involved in the regulation of lignin composition in xylem vessels. Journal of Experimental Botany, 2020, 71, 5484-5494.	4.8	4
60	The Agrobacterium rhizogenes rolB and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiologia Plantarum, 1997, 100, 456-462.	5.2	4
61	ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. Frontiers in Plant Science, 2020, 11, 601858.	3.6	3
62	Genetic Engineering of Wood Formation. Forestry Sciences, 2000, , 181-203.	0.4	2
63	Growth patterns and endogenous indole-3-acetic acid concentrations in current-year coppice shoots and seedlings of two Betula species. Physiologia Plantarum, 1993, 88, 403-412.	5.2	1
64	Populus genomics as a tool to unravel ethylene-dependent wood formation., 2007,, 159-160.		0
65	Ozone-Induced Cell Death. Tree Physiology, 2001, , 81-92.	2.5	O