Hidetoshi Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764821/publications.pdf

Version: 2024-02-01

183 papers 3,903 citations

35 h-index 53 g-index

191 all docs

191 docs citations

191 times ranked

4917 citing authors

#	Article	IF	Citations
1	[2+2] Cycloaddition-retroelectrocyclization reactivity and thin film transistor performances of carbazole-based platinum polyyne polymers. Materials Chemistry and Physics, 2022, 281, 125861.	4.0	3
2	Emerging Functions of Porous Separation Membranes Based on Nanofibers and Nanomaterials. Membrane, 2021, 46, 215-219.	0.0	0
3	Absence of HOMO/LUMO Transition in Charge-Transfer Complexes of Thienoacenes. Journal of Physical Chemistry A, 2021, 125, 146-153.	2.5	11
4	Updating Online Meeting ~Toward the 2021 Annual Meeting. Journal of Fiber Science and Technology, 2021, 77, P-149-P-149.	0.0	0
5	Cross-Linking of Poly(arylenebutadiynylene)s and Its Effect on Charge Carrier Mobilities in Thin-Film Transistors. Macromolecules, 2021, 54, 4351-4362.	4.8	4
6	Low-temperature graphitization of poly(acrylonitrile) densely grafted onto a silica core surface. Polymer, 2021, 225, 123768.	3.8	1
7	Preparation of Perfluorosulfonated Ionomer Nanofibers by Solution Blow Spinning. Membranes, 2021, 11, 389.	3.0	8
8	Microstructure Investigation of Polymer Electrolyte Fuel Cell Catalyst Layers Containing Perfluorosulfonated Ionomer. Membranes, 2021, 11, 466.	3.0	2
9	Persistent Water Repellency of Syndiotactic Polymethylene with Perfluoroethyl Hexyloxycarbonyl Side Chains. Macromolecular Rapid Communications, 2021, 42, e2100311.	3.9	3
10	Tension Sensor Based on Fluorescence Resonance Energy Transfer Reveals Fiber Diameter-Dependent Mechanical Factors During Myelination. Frontiers in Cellular Neuroscience, 2021, 15, 685044.	3.7	0
11	De Novo Ion-Exchange Membranes Based on Nanofibers. Membranes, 2021, 11, 652.	3.0	7
12	Effect of hydrogen–deuterium exchange in amide linkages on properties of electrospun polyamide nanofibers. Polymer, 2021, 229, 123994.	3.8	5
13	Tuning the Charge Carrier Polarity of Organic Transistors by Varying the Electron Affinity of the Flanked Units in Diketopyrrolopyrroleâ€Based Copolymers. Advanced Functional Materials, 2020, 30, 1907452.	14.9	45
14	Diketopyrrolopyrrole–thiophene–methoxythiophene based random copolymers for organic field effect transistor applications. Organic Electronics, 2020, 87, 105986.	2.6	22
15	Quinoidal bisthienoisatin based semiconductors: Synthesis, characterization, and carrier transport property. Nano Select, 2020, 1, 334-345.	3.7	2
16	Diketopyrrolopyrrole-Based Dual-Acceptor Copolymers to Realize Tunable Charge Carrier Polarity of Organic Field-Effect Transistors and High-Performance Nonvolatile Ambipolar Flash Memories. ACS Applied Electronic Materials, 2020, 2, 1609-1618.	4.3	21
17	High-Quality Nanofibrous Nonwoven Air Filters: Additive Effect of Water-Jet Nanofibrillated Celluloses on Their Performance. ACS Applied Polymer Materials, 2020, 2, 2830-2838.	4.4	18
18	Mesoporous Hydrated Graphene Nanoribbon Electrodes for Efficient Supercapacitors: Effect of Nanoribbon Dispersion on Pore Structure. Bulletin of the Chemical Society of Japan, 2020, 93, 1268-1274.	3.2	18

#	Article	IF	CITATIONS
19	Ambipolar organic field-effect transistors based on N-Unsubstituted thienoisoindigo derivatives. Dyes and Pigments, 2020, 180, 108418.	3.7	11
20	Bulky Phenylalkyl Substitutions to Bisthienoisatins and Thienoisoindigos. Crystal Growth and Design, 2020, 20, 3293-3303.	3.0	3
21	Direct Laser Writing of Graphene Nanoribbon Thin Films for Supercapacitor Electrodes. Electrochemistry, 2020, 88, 413-417.	1.4	0
22	Effect of Reaction Products on the PEFC Catalyst Ink Property and Catalyst Layer Quality. ECS Transactions, 2020, 98, 61-65.	0.5	2
23	Effect of Reaction Products on the PEFC Catalyst Ink Property and Catalyst Layer Quality. ECS Meeting Abstracts, 2020, MA2020-02, 2137-2137.	0.0	0
24	Tuning Backbone Planarity in Thiadiazolobenzotriazole–Bis(thienothiophenyl)ethylene Copolymers for Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2019, 1, 2302-2312.	4.4	10
25	Organic Liquid Impregnation Behavior into Nanofibrous Membranes: Quantitative Analysis of the Effects of Structural Parameters. ACS Omega, 2019, 4, 15856-15861.	3.5	2
26	Significant Improvement of Unipolar n-Type Transistor Performances by Manipulating the Coplanar Backbone Conformation of Electron-Deficient Polymers via Hydrogen Bonding. Journal of the American Chemical Society, 2019, 141, 3566-3575.	13.7	142
27	Ink Degradation and Its Effects on the Crack Formation of Fuel Cell Catalyst Layers. Journal of the Electrochemical Society, 2019, 166, F89-F92.	2.9	24
28	Significant Difference in Semiconducting Properties of Isomeric Allâ€Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angewandte Chemie - International Edition, 2019, 58, 11893-11902.	13.8	68
29	Significant Difference in Semiconducting Properties of Isomeric Allâ€Acceptor Polymers Synthesized via Direct Arylation Polycondensation. Angewandte Chemie, 2019, 131, 12019-12028.	2.0	7
30	Dual Imide-Functionalized Unit-Based Regioregular D–A1–D–A2 Polymers for Efficient Unipolar n-Channel Organic Transistors and All-Polymer Solar Cells. ACS Applied Materials & Diterfaces, 2019, 11, 22583-22594.	8.0	35
31	n-Type Organic Field-Effect Transistors Based on Bisthienoisatin Derivatives. ACS Applied Electronic Materials, 2019, 1, 764-771.	4.3	8
32	Structure-sound absorption property relationships of electrospun thin silica fiber sheets: Quantitative analysis based on acoustic models. Applied Acoustics, 2019, 152, 13-20.	3.3	31
33	Fluorination and chlorination effects on quinoxalineimides as an electron-deficient building block for n-channel organic semiconductors. RSC Advances, 2019, 9, 10807-10813.	3.6	5
34	p- and n-Channel Photothermoelectric Conversion Based on Ultralong Near-Infrared Wavelengths Absorbing Polymers. ACS Applied Polymer Materials, 2019, 1, 542-551.	4.4	14
35	Temperature dependence of pressure-driven water permeation through membranes consisting of vertically-aligned double-walled carbon nanotube arrays. Carbon, 2019, 146, 785-788.	10.3	6
36	Assembly of reduced graphene oxides into a three-dimensional porous structure <i>via</i> confinement within robust cellulose oligomer networks. RSC Advances, 2019, 9, 38848-38854.	3.6	7

#	Article	IF	CITATIONS
37	Uniaxial alignment of nematic liquid crystals filling vacant spaces in surface-treated nanofibre nonwoven. Liquid Crystals, 2019, 46, 1241-1245.	2.2	1
38	Alteration and degradation reaction in fuel cell catalyst ink fabrication. The Proceedings of the Thermal Engineering Conference, 2019, 2019, 0162.	0.0	0
39	Highâ€Performance nâ€Channel Organic Transistors Using Highâ€Molecularâ€Weight Electronâ€Deficient Copolymers and Amineâ€Tailed Selfâ€Assembled Monolayers. Advanced Materials, 2018, 30, e1707164.	21.0	97
40	Large-area, transferable sub-10 nm polymer membranes at the air–water interface. Nano Research, 2018, 11, 3833-3843.	10.4	2
41	Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polymers for Advanced Technologies, 2018, 29, 820-824.	3.2	12
42	Structure–Property Relationships of Random Aromatic Copolyamide Membranes by the Partial <i>N</i> å€Methylation of Amide Linkages. Macromolecular Chemistry and Physics, 2018, 219, 1700522.	2.2	2
43	Nanofibers as novel platform for highâ€functional ion exchangers. Journal of Chemical Technology and Biotechnology, 2018, 93, 2791-2803.	3.2	23
44	Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactantâ€treated <scp>CNT</scp> s. Journal of Applied Polymer Science, 2018, 135, 45875.	2.6	6
45	Temperature compensation of pressure-sensitive luminescent polymer sensors. Sensors and Actuators B: Chemical, 2018, 255, 1960-1966.	7.8	16
46	Ink Degradation Phenomena and Its Impact on Crack Formation of Fuel Cell Catalyst. ECS Transactions, 2018, 86, 151-156.	0.5	2
47	Investigation of Drying Process of Catalyst Ink for Polymer Electrolyte Fuel Cells by Grazing-Incidence X-Ray Scattering. ECS Transactions, 2018, 86, 157-161.	0.5	3
48	Polyelectrolyte Composite Membranes Containing Electrospun Ion-Exchange Nanofibers: Effect of Nanofiber Surface Charges on Ionic Transport. Langmuir, 2018, 34, 13035-13040.	3 . 5	16
49	High-performance structure of a coil-shaped soft-actuator consisting of polymer threads and carbon nanotube yarns. AIP Advances, 2018, 8, .	1.3	8
50	Direct Observation and Quantitative Analysis of the Fiber Formation Process during Electrospinning by a High-Speed Camera. Industrial & Engineering Chemistry Research, 2018, 57, 12122-12126.	3.7	18
51	Investigation of Drying Process of Catalyst Ink for Polymer Electrolyte Fuel Cells By Grazing-Incidence X-Ray Scattering. ECS Meeting Abstracts, 2018, , .	0.0	1
52	Endeavors towards Function Exploration of Nanofibrous Materials. Journal of Fiber Science and Technology, 2018, 74, P-39-P-43.	0.0	0
53	Ink Degradation Phenomena and Its Impact on Crack Formation of Fuel Cell Catalyst. ECS Meeting Abstracts, 2018, , .	0.0	0
54	Trial Manufacture of Nanofibers Made from a Main-Chain Liquid-Crystalline Elastomer Composed of Bibenzoate Mesogens. Journal of Fiber Science and Technology, 2018, 74, 89-94.	0.4	0

#	Article	IF	CITATIONS
55	Bioinspired Microenvironments: Rational Design of High-Mobility Semicrystalline Conjugated Polymers with Tunable Charge Polarity: Beyond Benzobisthiadiazole-Based Polymers (Adv. Funct.) Tj ETQq1 1 0.7	'8434194 rgl	BT <i>ф</i> Overloc <mark>k</mark>
56	Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes. RSC Advances, 2017, 7, 12351-12358.	3.6	21
57	lonic Liquid-Based Electrolytes Containing Surface-Functionalized Inorganic Nanofibers for Quasisolid Lithium Batteries. ACS Omega, 2017, 2, 835-841.	3.5	19
58	N-Unsubstituted thienoisoindigos: preparation, molecular packing and ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 2509-2512.	5 . 5	25
59	Water transport phenomena through membranes consisting of vertically-aligned double-walled carbon nanotube array. Carbon, 2017, 120, 358-365.	10.3	31
60	Thiadiazole-fused Quinoxalineimide as an Electron-deficient Building Block for N-type Organic Semiconductors. Organic Letters, 2017, 19, 3275-3278.	4.6	25
61	Organic Transistors: D-A1-D-A2 Backbone Strategy for Benzobisthiadiazole Based n-Channel Organic Transistors: Clarifying the Selenium-Substitution Effect on the Molecular Packing and Charge		

#	Article	IF	CITATIONS
73	Semipermeable membranes based on polybenzimidazole: Simultaneous improvement in water flux and salt rejection by facile cross-linking. Desalination, 2016, 395, 1-7.	8.2	11
74	Ambipolar organic transistors based on isoindigo derivatives. Organic Electronics, 2016, 35, 95-100.	2.6	33
75	Optical Waveguide Biosensors for Highly Sensitive and High-Throughput Applications. MRS Advances, 2016, 1, 755-760.	0.9	5
76	ESA-CF Synthesis of Linear and Cyclic Polymers Having Densely Appended Perylene Units and Topology Effects on Their Thin-Film Electron Mobility. Macromolecules, 2016, 49, 5831-5840.	4.8	13
77	Influence of structure–property relationships of two structural isomers of thiophene-flanked diazaisoindigo on carrier-transport properties. RSC Advances, 2016, 6, 109434-109441.	3.6	10
78	An ultra-narrow bandgap derived from thienoisoindigo polymers: structural influence on reducing the bandgap and self-organization. Polymer Chemistry, 2016, 7, 1181-1190.	3.9	42
79	Triggered Structural Control of Dynamic Covalent Aromatic Polyamides: Effects of Thermal Reorganization Behavior in Solution and Solid States. Macromolecules, 2016, 49, 2153-2161.	4.8	14
80	Observation and Analysis of Nafion Solution By Frozen TEM Technology. ECS Meeting Abstracts, 2016, ,	0.0	0
81	The Origin of Low-Energy Gap Derived from Thienoisoindigo-Based Polymers. Journal of Fiber Science and Technology, 2016, 72, P-337-P-338.	0.0	0
82	Time-Resolved Nanostructural Analysis of Thin-Film Formation Process from Nafion Solution by Synchrotron X-Ray Scattering. ECS Meeting Abstracts, $2016, , .$	0.0	0
83	Forefront of Nanofibers: High Strength Fibers and Optoelectronic Applications. , 2016, , 313-323.		1
84	Effect of primary structure on permselectivity of ultrathin semipermeable polybenzimidazole membrane. Journal of Applied Polymer Science, 2015, 132, .	2.6	5
85	Enhancement of Salt Rejection and Water Flux by Crosslinking-Induced Microstructure Change of N-substituted Polybenzimidazole Membranes. Materials Research Society Symposia Proceedings, 2015, 1745, 16.	0.1	1
86	Quinoxalineimide as a Novel Electron-accepting Building Block for Organic Optoelectronics. Chemistry Letters, 2015, 44, 1128-1130.	1.3	5
87	Simulation Study on Optical Absorption Property of Fiber- and Fabric-Shaped Organic Thin-Film Solar Cells with Resin Sealing Layer. Journal of Fiber Science and Technology, 2015, 71, 121-126.	0.0	5
88	Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	4
89	Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures. Carbon, 2015, 95, 302-308.	10.3	8
90	Design and structure–property relationship of benzothienoisoindigo in organic field effect transistors. RSC Advances, 2015, 5, 61035-61043.	3.6	36

#	Article	IF	Citations
91	An iodine effect in ambipolar organic field-effect transistors based on indigo derivatives. Journal of Materials Chemistry C, 2015, 3, 8612-8617.	5.5	32
92	New Semiconducting Polymers Based on Benzobisthiadiazole Analogues: Tuning of Charge Polarity in Thin Film Transistors via Heteroatom Substitution. Macromolecules, 2015, 48, 4012-4023.	4.8	54
93	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. Electrochimica Acta, 2015, 175, 134-140.	5.2	73
94	Filling the Gaps between Graphene Oxide: A General Strategy toward Nanolayered Oxides. Advanced Functional Materials, 2015, 25, 5683-5690.	14.9	31
95	Radical scavenging reaction kinetics with multiwalled carbon nanotubes. Carbon, 2015, 83, 232-239.	10.3	21
96	Ambipolar Organic Field-Effect Transistors Based on Indigo Derivatives. Engineering Journal, 2015, 19, 61-74.	1.0	7
97	Improvement in semipermeable membrane performance of wholly aromatic polyamide through an additive processing strategy. Journal of Polymer Science Part A, 2014, 52, 1275-1281.	2.3	11
98	Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template. Materials Letters, 2014, 115, 187-189.	2.6	54
99	The impact of molecular planarity on electronic devices in thienoisoindigo-based organic semiconductors. Journal of Materials Chemistry C, 2014, 2, 10455-10467.	5.5	35
100	High performance ambipolar organic field-effect transistors based on indigo derivatives. Journal of Materials Chemistry C, 2014, 2, 9311-9317.	5. 5	80
101	lon-conductive and mechanical properties of polyether/silica thin fiber composite electrolytes. Reactive and Functional Polymers, 2014, 81, 40-44.	4.1	13
102	Preparation of Perfluorosulfonate Ionomeric Hollow Thin Fibers by Two-Fluid Electrospinning. Kobunshi Ronbunshu, 2014, 71, 319-324.	0.2	3
103	Design of Fullerene-Free Electron-Acceptor Materials Containing Perylenediimide Units for Solution-Processed Organic Electronic Devices. Bulletin of the Chemical Society of Japan, 2014, 87, 1083-1093.	3.2	3
104	Effect of <i>N < /i>-methyl amide linkage on hydrogen bonding behavior and water transport properties of partially <i>N < /i>-methylated random aromatic copolyamides. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.</i></i>	2.3	2
105	Electrospun Composite Nanofiber Yarns Containing Oriented Graphene Nanoribbons. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6225-6231.	8.0	83
106	A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene. Physical Chemistry Chemical Physics, 2013, 15, 17818.	2.8	27
107	Structure changes during tensile deformation and mechanical properties of a twisted carbon nanotube yarn. Carbon, 2013, 60, 193-201.	10.3	22
108	Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides. Journal of Materials Chemistry C, 2013, 1, 5395.	5 . 5	45

#	Article	lF	Citations
109	Synthesis of transparent and thermally stable polycyanurates and their thermal rearrangement. Journal of Polymer Science Part A, 2013, 51, 3950-3955.	2.3	6
110	Optical Nanofibers., 2013,, 1-4.		1
111	ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO. Journal of Physics: Conference Series, 2013, 429, 012029.	0.4	14
112	Electrochemical Properties of Sulfonated Syndiotactic Polystyrene Membranes. Kobunshi Ronbunshu, 2013, 70, 102-107.	0.2	1
113	Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(l‰-pentadecalactone) hard segments. European Polymer Journal, 2012, 48, 1866-1874.	5.4	51
114	Nanosize effects of sulfonated carbon nanofiber fabrics for high capacity ion-exchanger. RSC Advances, 2012, 2, 3109.	3.6	29
115	Solution-Processed Nanowire Coating for Light Management in Organic Solar Cells. Journal of Nanotechnology, 2012, 2012, 1-7.	3.4	5
116	Preparation of poly(γ-benzyl-L-glutamate) nanofibers by electrospinning from isotropic and biphasic liquid crystal solutions. Polymer Journal, 2012, 44, 360-365.	2.7	9
117	Improved stability of organic field-effect transistor performance in oligothiophenes including \hat{l}^2 -isomers. Tetrahedron, 2012, 68, 2790-2798.	1.9	10
118	Current Status and Future Prospects on Nanofibers' Technology Development. Seikei-Kakou, 2012, 24, 121-126.	0.0	0
119	Top-Down Process Based on Electrospinning, Twisting, and Heating for Producing One-Dimensional Carbon Nanotube Assembly. ACS Applied Materials & Earbon Nanotube Assembly. ACS Applied Materials & Earbon Nanotube Assembly.	8.0	45
120	Enhancing the Effect of the Nanofiber Network Structure on Thermoresponsive Wettability Switching. Langmuir, 2011, 27, 14716-14720.	3.5	24
121	Molecularly imprinted nanofiber membranes. Current Opinion in Chemical Engineering, 2011, 1, 18-26.	7.8	36
122	Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation. Membranes, 2011, 1, 249-264.	3.0	168
123	Light scattering assisted surface plasmon resonance at electrospun nanofiber-coated gold surfaces. Applied Physics Letters, 2011, 98, 241109.	3.3	13
124	Inkjet Printing of Graphene Nanoribbons for Organic Field-Effect Transistors. Applied Physics Express, 2011, 4, 115101.	2.4	14
125	Nanofibrous Membranes – Preparation and Application of Electrospun Membranes –. Membrane, 2010, 35, 113-118.	0.0	1
126	Control over Internal Structure of Liquid Crystal Polymer Nanofibers by Electrospinning. Macromolecular Rapid Communications, 2010, 31, 1641-1645.	3.9	36

#	Article	IF	Citations
127	Development of \hat{l}^2 -linked quaterthiophene and tetrathiafulvalene dimers as new organic semiconductors. Physica B: Condensed Matter, 2010, 405, S373-S377.	2.7	3
128	Nanomaterial-Enhanced All-Solid Flexible Zincâ^Carbon Batteries. ACS Nano, 2010, 4, 2730-2734.	14.6	148
129	Antimicrobial Activity of Ultra-fine Fiber Nonwoven Fabrics Produced by Electrospinning. Seikei-Kakou, 2009, 21, 287-290.	0.0	2
130	Electrospun Nanofiber Networks for Electronics and Optics. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	3
131	Efficient Carbon Nanotube Field Emitter using Electrospun Carbon Nanofibers as a Flexible Electrode. Materials Research Society Symposia Proceedings, 2009, 1173, 7.	0.1	0
132	PVDF/PMMA composite nanofiber fabricated by electrospray deposition: Crystallization of PVDF induced by solvent extraction of PMMA component. Journal of Applied Polymer Science, 2009, 112, 1868-1872.	2.6	13
133	Insulin adsorption into porous charged membranes: Effect of the electrostatic interaction. Biotechnology Progress, 2009, 25, 1115-1121.	2.6	4
134	Insulin transport across porous charged membranes: Effect of the electrostatic interaction. Biotechnology Progress, 2009, 25, 1379-1386.	2.6	5
135	Simulation study on the influence of an electric field on water evaporation. Computational and Theoretical Chemistry, 2009, 904, 83-90.	1.5	56
136	Preparation of PVDF/PMMA Blend Nanofibers by Electrospray Deposition: Effects of Blending Ratio and Humidity. Polymer Journal, 2009, 41, 402-406.	2.7	27
137	Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl) Tj ETQq1 1 C	.784314 r	gBŢ ₃ /Overloc
138	Synthesis and characterization of carbon nanotube grown on flexible and conducting carbon fiber sheet for field emitter. Diamond and Related Materials, 2009, 18, 341-344.	3.9	9
139	Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene. Journal of Power Sources, 2008, 176, 16-22.	7.8	43
140	Fine structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 558-563.	2.1	31
141	Characterization of Insulin Adsorption Behavior on Amphoteric Charged Membranes. Polymer Journal, 2008, 40, 837-841.	2.7	14
142	ZnO Nanowire and \$hbox{WS}_{2}\$ Nanotube Electronics. IEEE Transactions on Electron Devices, 2008, 55, 2988-3000.	3.0	35
143	Carbon nanotubes on carbon fabrics for flexible field emitter arrays. Applied Physics Letters, 2008, 93, 053107.	3.3	14
144	Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Applied Physics Letters, 2008, 93, .	3.3	76

#	Article	IF	CITATIONS
145	Control over Color of Nanotextured Coatings by Electrospray Deposition. Journal of Fiber Science and Technology, 2008, 64, 1-4.	0.0	10
146	Control over wettability of textured surfaces by electrospray deposition. Journal of Applied Polymer Science, 2007, 103, 3811-3817.	2.6	35
147	Molecularly Imprinted Nanofiber Membranes from Carboxylated Polysulfone by Electrospray Deposition. Macromolecular Rapid Communications, 2007, 28, 2100-2105.	3.9	45
148	Membrane potential across reverse osmosis membranes under pressure gradient. Journal of Colloid and Interface Science, 2007, 309, 272-278.	9.4	24
149	Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior. Journal of Colloid and Interface Science, 2007, 310, 678-681.	9.4	45
150	Formation of \hat{l}^2 -Phase Crystalline Structure of PVDF Nanofiber by Electrospray Deposition: Additive Effect of Ionic Fluorinated Surfactant. Polymer Journal, 2007, 39, 670-674.	2.7	50
151	Preparation of Porous PVDF Nanofiber from PVDF/PVP Blend by Electrospray Deposition. Polymer Journal, 2007, 39, 1060-1064.	2.7	33
152	Preparation of Carbon Fiber Fabrics from Phenolic Resin by Electrospray Deposition. Polymer Journal, 2007, 39, 1128-1134.	2.7	37
153	Morphology and Activity of Biological Fabrics Prepared by Electrospray Deposition Method. ACS Symposium Series, 2006, , 343-352.	0.5	0
154	Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 779-786.	2.1	108
155	Preparation of ion-exchange fiber fabrics by electrospray deposition. Journal of Colloid and Interface Science, 2006, 293, 143-150.	9.4	49
156	Effect of ion-exchange nanofiber fabrics on water splitting in bipolar membrane. Journal of Colloid and Interface Science, 2006, 300, 442-445.	9.4	29
157	Membrane potentials across nanofiltration membranes: effect of nanoscaled cavity structure. Journal of Molecular Structure, 2005, 739, 99-104.	3.6	12
158	Membrane potential across anion-exchange membranes in acidic solution system. Journal of Colloid and Interface Science, 2005, 286, 288-293.	9.4	13
159	Organic/inorganic hybrid nano-microstructured coatings on insulated substrates by electrospray deposition. Journal of Colloid and Interface Science, 2005, 286, 414-416.	9.4	30
160	Preparation of Polysaccharide Nanofiber Fabrics by Electrospray Deposition: Additive Effects of Poly(ethylene oxide). Polymer Journal, 2005, 37, 391-398.	2.7	35
161	Membrane Potential across Low-Water-Content Charged Membranes:Â Effect of Ion Pairing. Journal of Physical Chemistry B, 2005, 109, 14130-14136.	2.6	28
162	Phase transformation behavior of Ti-rich NiTi alloy by a calorimetric method. Journal of Materials Science, 2004, 39, 4391-4392.	3.7	5

#	Article	IF	CITATIONS
163	Surface morphology and biological activity of protein thin films produced by electrospray deposition. Journal of Colloid and Interface Science, 2004, 269, 336-340.	9.4	88
164	Charge effectiveness of sulfonated polymer membranes under low-water-content condition. Science and Technology of Advanced Materials, 2004, 5, 461-468.	6.1	22
165	Poly(ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure. Journal of Colloid and Interface Science, 2004, 279, 484-492.	9.4	78
166	Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH. Journal of Colloid and Interface Science, 2003, 264, 82-88.	9.4	59
167	Pore-surface characterization of amphoteric charged membranes by means of zeta potential measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 222, 165-173.	4.7	3
168	Novel poly(ethylene glycol) derivatives with carboxylic acid pendant groups: synthesis and their protection and enhancing effect on non-viral gene transfection systems. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 515-531.	3. 5	37
169	Membrane Potentials across Cation-Exchange Membranes with a Low Water Content. Journal of Physical Chemistry B, 2003, 107, 10506-10512.	2.6	19
170	lonic Transport Behavior across Charged Membranes with Low Water Content. I. Theoretical Aspect of Membrane Potentials in Membranes Having Inhomogeneously Distributed Fixed-Charge Groups. Journal of Physical Chemistry B, 2003, 107, 10615-10622.	2.6	18
171	Fabrication Technology of Nanofiber by Electrospray Deposition. Kobunshi, 2003, 52, 829-832.	0.0	5
172	Interaction of Organic Molecules with Weak Amphoteric Charged Membrane Surfaces:Â Effect of Interfacial Charge Structure. Langmuir, 2002, 18, 3698-3703.	3.5	12
173	Characterization of Novel Weak Amphoteric Charged Membranes Using ζ-Potential Measurements:Â Effect of Dipolar Ion Structure. Langmuir, 2001, 17, 3375-3381.	3.5	13
174	Preparation and Characterization of Novel Weak Amphoteric Charged Membrane Containing Cysteine Residues. Journal of Colloid and Interface Science, 2001, 239, 467-474.	9.4	16
175	Intermediate phase on rapidly quenched Ni49Ti50Al1. Journal of Materials Science Letters, 1999, 18, 1853-1854.	0.5	6
176	Effect of Fixed Charge Groups and Counter lons on the Transport Phenomena of Paraffin and Olefin across Anhydrous Negatively Charged Membranes. Journal of Colloid and Interface Science, 1998, 208, 310-318.	9.4	3
177	Permeation of n-butane, 1-butene and 1,3-butadiene through anhydrated Ag+-doped perfluorocarbon-type ion-exchange membranes. Polymer, 1998, 39, 2315-2323.	3.8	26
178	Transport and high-selectivity mechanisms of C 4 hydrocarbons through anhydrous Ag +-doped perfluorocarbon-type ion-exchange membranes. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 665.	1.7	16
179	Effect of Proton on Potassium Ion in Countertransport across Fine Porous Charged Membranes. Journal of Physical Chemistry B, 1998, 102, 5011-5016.	2.6	56
180	Wettability of Al ₂ O ₃ by Liquid Cu as Influenced by Additives and Partial Transient Liquid-Phase Bonding of Al ₂ O ₃ . Materials Transactions, JIM, 1995, 36, 555-564.	0.9	12

#	Article	IF	CITATIONS
181	Shift of ??? transformation temperature of cobalt with thermal cycling. Journal of Materials Science Letters, 1993, 12, 969-970.	0.5	7
182	Partial oxidation of methane to methanol in a newly developed selective discharge plasma reactor. , 0, , \cdot		1
183	Reaction Products Affecting the PEFC Catalyst Ink Property. Journal of the Electrochemical Society, 0,	2.9	4