
Hirohiko Ise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764706/publications.pdf Version: 2024-02-01

HIDOHIKO ISE

#	Article	IF	CITATIONS
1	Interactions of N-acetyl-D-glucosamine-conjugated silk fibroin with lectins, cytoskeletal proteins and cardiomyocytes. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111406.	5.0	2
2	Development of a Gene Delivery System of Oligonucleotides for Fibroses by Targeting Cell-Surface Vimentin-Expressing Cells with N-Acetylglucosamine-Bearing Polymer-Conjugated Polyethyleneimine. Polymers, 2020, 12, 1508.	4.5	7
3	Multimeric conformation of type III intermediate filaments but not the filamentous conformation exhibits high affinity to lipid bilayers. Genes To Cells, 2020, 25, 413-426.	1.2	21
4	Improved Isolation of Mesenchymal Stem Cells Based on Interactions between <i>N</i> -Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin. Stem Cells International, 2019, 2019, 1-13.	2.5	15
5	Elucidation of Glc <scp>NA</scp> câ€binding properties of type <scp>III</scp> intermediate filament proteins, using Glc <scp>NA</scp> câ€bearing polymers. Genes To Cells, 2017, 22, 900-917.	1.2	8
6	Vimentin's <i>N</i> -Acetylglucosamine-Binding Activity: Its Physiological Function. Trends in Glycoscience and Glycotechnology, 2017, 29, E71-E79.	0.1	1
7	Vimentin's <i>N</i> -Acetylglucosamine-Binding Activity: Its Physiological Function. Trends in Glycoscience and Glycotechnology, 2017, 29, J49-J57.	0.1	0
8	Imaging and therapy of liver fibrosis using bioreducible polyethylenimine/siRNA complexes conjugated with N-acetylglucosamine as a targeting moiety. Biomaterials, 2013, 34, 6504-6514.	11.4	27
9	Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin. Glycobiology, 2012, 22, 788-805.	2.5	28
10	Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology, 2012, 22, 1741-1759.	2.5	38
11	Interactions of vimentin- or desmin-expressing liver cells with N-acetylglucosamine-bearing polymers. Biomaterials, 2012, 33, 2154-2164.	11.4	27
12	Targeting N-acetylglucosamine-bearing polymer-coated liposomes to vascular smooth muscle cells. Journal of Artificial Organs, 2011, 14, 301-309.	0.9	15
13	Gene delivery system based on highly specific recognition of surface-vimentin with N-acetylglucosamine immobilized polyethylenimine. Biomaterials, 2011, 32, 3471-3480.	11.4	38
14	Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology, 2010, 20, 843-864.	2.5	81
15	Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro. Journal of Controlled Release, 2007, 122, 189-198.	9.9	27