Adam Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4764629/publications.pdf

Version: 2024-02-01

246 papers 7,736 citations

44069 48 h-index 71685 **76** g-index

254 all docs

254 docs citations

times ranked

254

3839 citing authors

#	Article	IF	CITATIONS
1	Effects of charge exchange on the evaporative wind of HDÂ209458b. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1724-1736.	4.4	2
2	Intelligence as a planetary scale process. International Journal of Astrobiology, 2022, 21, 47-61.	1.6	19
3	New Clues to the Evolution of Dwarf Carbon Stars From Their Variability and X-Ray Emission. Astrophysical Journal, 2022, 926, 210.	4.5	1
4	The formation of discs in the interior of AGB stars from the tidal disruption of planets and brown dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5994-6000.	4.4	2
5	The Case for Technosignatures: Why They May Be Abundant, Long-lived, Highly Detectable, and Unambiguous. Astrophysical Journal Letters, 2022, 927, L30.	8.3	16
6	Panchromatic HST/WFC3 Imaging Studies of Young, Rapidly Evolving Planetary Nebulae. I. NGC 6302. Astrophysical Journal, 2022, 927, 100.	4.5	6
7	Jets from main sequence and white dwarf companions during common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3041-3057.	4.4	9
8	Excitation and Excavation of the Claws of the Southern Crab. Astrophysical Journal, 2022, 933, 168.	4.5	0
9	Uncovering the socioeconomic facets of human mobility. Scientific Reports, 2021, 11, 8616.	3.3	42
10	The Dynamics of the Transition from Kardashev Type II to Type III Galaxies Favor Technosignature Searches in the Central Regions of Galaxies. Research Notes of the AAS, 2021, 5, 141.	0.7	0
11	Cooling and instabilities in colliding flows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2266-2278.	4.4	3
12	Triggering a Climate Change Dominated "Anthropocene― ls lt Common among Exocivilizations?. Astronomical Journal, 2021, 162, 196.	4.7	4
13	Interactions of magnetized plasma flows in pulsed-power driven experiments. Plasma Physics and Controlled Fusion, 2020, 62, 014020.	2.1	15
14	Common envelope evolution on the asymptotic giant branch: unbinding within a decade?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4028-4039.	4.4	22
15	Design of a 3-D Printed Experimental Platform for Studying the Formation and Magnetization of Turbulent Plasma Jets. IEEE Transactions on Plasma Science, 2020, 48, 4056-4067.	1.3	1
16	Contact inequality: first contact will likely be with an older civilization. International Journal of Astrobiology, 2020, 19, 430-437.	1.6	14
17	Bipolar planetary nebulae from outflow collimation by common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2855-2869.	4.4	36
18	First Results from a Panchromatic HST/WFC3 Imaging Study of the Young, Rapidly Evolving Planetary Nebulae NGC 7027 and NGC 6302. Galaxies, 2020, 8, 49.	3.0	4

#	Article	IF	CITATIONS
19	Effects of radiation pressure on the evaporative wind of HD 209458b. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1292-1305.	4.4	26
20	Models of the Mass-ejection Histories of Pre-planetary Nebulae. IV. Magnetized Winds and the Origins of Jets, Bullets, and FLIERs. Astrophysical Journal, 2020, 889, 13.	4.5	20
21	Uncovering the differences and similarities between physical and virtual mobility. Journal of the Royal Society Interface, 2020, 17, 20200250.	3.4	3
22	Hydrodynamic and magnetohydrodynamic simulations of wire turbulence. High Energy Density Physics, 2019, 33, 100699.	1.5	1
23	Models of the Mass-ejection Histories of Pre-planetary Nebulae. III. The Shaping of Lobes by Post-AGB Winds. Astrophysical Journal, 2019, 877, 30.	4.5	17
24	Hydrodynamic simulations of disrupted planetary accretion discs inside the core of an AGB star. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1179-1185.	4.4	10
25	How drag force evolves in global common envelope simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3727-3739.	4.4	21
26	A Chandra Study: Are Dwarf Carbon Stars Spun Up and Rejuvenated by Mass Transfer?. Astrophysical Journal, 2019, 881, 49.	4.5	4
27	The Fermi Paradox and the Aurora Effect: Exo-civilization Settlement, Expansion, and Steady States. Astronomical Journal, 2019, 158, 117.	4.7	26
28	Energy budget and core-envelope motion in common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1070-1085.	4.4	19
29	Proper Motions and Shock Wave Dynamics in the HH 7-11 Stellar Jet. Astrophysical Journal, 2019, 876, 147.	4.5	8
30	Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities. Reviews of Modern Physics, 2019, 91, .	45.6	77
31	Solving the Riemann problem for realistic astrophysical fluids. Journal of Computational Physics, 2019, 388, 490-517.	3.8	6
32	Photoevaporative flows from exoplanet atmospheres: a 3D radiative hydrodynamic parameter study. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1481-1495.	4.4	12
33	The Silurian hypothesis: would it be possible to detect an industrial civilization in the geological record?. International Journal of Astrobiology, 2019, 18, 142-150.	1.6	23
34	Wind-accelerated orbital evolution in binary systems with giant stars. Monthly Notices of the Royal Astronomical Society, 2018, 473, 747-756.	4.4	24
35	Accretion in common envelope evolution. Proceedings of the International Astronomical Union, 2018, 14, 235-238.	0.0	0
36	Planetary Nebulae Shaped by Common Envelope Evolution. Galaxies, 2018, 6, 113.	3.0	23

#	Article	IF	Citations
37	Simulating radiative magnetohydrodynamical flows with <scp>astrobear < /scp>: implementation and applications of non-equilibrium cooling. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3098-3107.</scp>	4.4	3
38	The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback. Astrobiology, 2018, 18, 503-518.	3.0	19
39	Models of the Mass-ejection Histories of Pre-planetary Nebulae. II. The Formation of Minkowski's Butterfly and its Proboscis in M2–9. Astrophysical Journal, 2018, 853, 168.	4.5	10
40	Accretion in common envelope evolution. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1898-1911.	4.4	90
41	Generation of a circumstellar gas disc by hot Jupiter WASP-12b. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2592-2598.	4.4	21
42	The Shock Dynamics of Heterogeneous YSO Jets:3D Simulations Meet Multi-epoch Observations. Astrophysical Journal, 2017, 837, 143.	4.5	17
43	Earth as a Hybrid Planet: The Anthropocene in an Evolutionary Astrobiological Context. Anthropocene, 2017, 19, 13-21.	3.3	27
44	The structure of bow shocks formed by the interaction of pulsed-power driven magnetised plasma flows with conducting obstacles. Physics of Plasmas, 2017, 24, .	1.9	19
45	Mass transfer and disc formation in AGB binary systems. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4465-4477.	4.4	67
46	Models of the Hydrodynamic Histories of Post-AGB Stars. I. Multiflow Shaping of OH 231.8+04.2. Astrophysical Journal, 2017, 843, 108.	4.5	17
47	Hot planetary winds near a star: dynamics, wind–wind interactions, and observational signatures. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2458-2473.	4.4	51
48	Reorienting MHD colliding flows: a shock physics mechanism for generating filaments normal to magnetic fields. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2938-2948.	4.4	13
49	Are Clocks Enough? Science, Philosophy, and Time. Thirty Years of Astronomical Discovery With UKIRT, 2017, , 391-392.	0.3	0
50	Mass transfer in asymptotic-giant-branch binary systems. Proceedings of the International Astronomical Union, 2016, 12, 367-368.	0.0	1
51	Stop layer: a flow braking mechanism in space and support from a lab experiment. Plasma Physics and Controlled Fusion, 2016, 58, 064001.	2.1	7
52	Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. Nature Communications, 2016, 7, 13081.	12.8	46
53	DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES. Astrophysical Journal, 2016, 833, 249.	4.5	8
54	Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability. Physics of Plasmas, 2016, 23, .	1.9	31

#	Article	IF	Citations
55	A New Empirical Constraint on the Prevalence of Technological Species in the Universe. Astrobiology, 2016, 16, 359-362.	3.0	39
56	Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows. Physical Review Letters, 2016, 116, 225001.	7.8	16
57	Three-dimensional hydrodynamic simulations of <i>L</i> ₂ Puppis. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4182-4187.	4.4	19
58	WHEN SHOCK WAVES COLLIDE. Astrophysical Journal, 2016, 823, 148.	4.5	13
59	The creation of AGB fallback shells. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3219-3224.	4.4	4
60	Molecular cloud formation in high-shear, magnetized colliding flows. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2110-2128.	4.4	22
61	The inner cavity of the circumnuclear disc. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1721-1736.	4.4	16
62	Planetary Evaporation and the Dynamics of Planet Wind/Stellar Wind Bow Shocks. Proceedings of the International Astronomical Union, 2015, 10, 237-240.	0.0	1
63	Uncertain for a century: quantum mechanics and the dilemma of interpretation. Annals of the New York Academy of Sciences, 2015, 1361, 69-73.	3.8	2
64	BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS. Astrophysical Journal, 2015, 815, 96.	4.5	32
65	THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE. Astrophysical Journal, 2015, 800, 8.	4.5	48
66	Numerical simulations of Mach stem formation via intersecting bow shocks. High Energy Density Physics, 2015, 17, 135-139.	1.5	3
67	MAGNETOHYDRODYNAMIC EFFECTS ON PULSED YOUNG STELLAR OBJECT JETS. I. 2.5D SIMULATIONS. Astrophysical Journal, 2015, 800, 41.	4.5	9
68	Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory. High Energy Density Physics, 2015, 17, 63-67.	1.5	9
69	Transcending matter: physics and ultimate meaning. Annals of the New York Academy of Sciences, 2015, 1361, 36-57.	3.8	0
70	Triggered star formation: Rotation, magnetic fields and outflows. High Energy Density Physics, 2015, 17, 12-17.	1.5	1
71	Numerical simulation of an experimental analogue of a planetary magnetosphere. High Energy Density Physics, 2015, 17, 38-41.	1.5	5
72	Sustainability and the astrobiological perspective: Framing human futures in a planetary context. Anthropocene, 2014, 5, 32-41.	3.3	19

#	Article	IF	Citations
73	The formation of reverse shocks in magnetized high energy density supersonic plasma flows. Physics of Plasmas, 2014, 21, 056305.	1.9	31
74	Rotating plasma disks in dense Z-pinch experiments. , 2014, , .		2
75	ON THE ROLE OF AMBIENT ENVIRONMENTS IN THE COLLAPSE OF BONNOR-EBERT SPHERES. Astrophysical Journal, 2014, 790, 70.	4.5	20
76	Triggered star formation and its consequences. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2884-2892.	4.4	22
77	THE <i>CHANDRA</i> PLANETARY NEBULA SURVEY (CHANPLANS). II. X-RAY EMISSION FROM COMPACT PLANETARY NEBULAE. Astrophysical Journal, 2014, 794, 99.	4.5	40
78	Laboratory Astrophysics Experiments with Magnetically Driven Plasma Jets. Journal of Physics: Conference Series, 2014, 511, 012050.	0.4	3
79	Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science, 2014, 346, 325-328.	12.6	173
80	THE EFFECTS OF FLOW-INHOMOGENEITIES ON MOLECULAR CLOUD FORMATION: LOCAL VERSUS GLOBAL COLLAPSE. Astrophysical Journal, 2014, 790, 37.	4.5	18
81	Jets and Outflows from Star to Cloud: Observations Confront Theory. , 2014, , .		46
82	Interaction between shocks and clumps with self-contained magnetic fields. High Energy Density Physics, 2013, 9, 132-140.	1.5	1
83	Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR. Journal of Computational Physics, 2013, 236, 461-476.	3.8	46
84	Interaction of radiatively cooled plasma jets with neutral gases forÂlaboratory astrophysics studies. High Energy Density Physics, 2013, 9, 141-147.	1.5	24
85	Numerical simulations of Z-pinch experiments to create supersonic differentially-rotating plasma flows. High Energy Density Physics, 2013, 9, 108-111.	1.5	6
86	Mach stem hysteresis: Experiments addressing a novel explanation of clumpy astrophysical jet emission. High Energy Density Physics, 2013, 9, 251-257.	1.5	5
87	Comparing Poynting flux dominated magnetic tower jets with kinetic-energy dominated jets. High Energy Density Physics, 2013, 9, 264-268.	1.5	4
88	Molecular clouds, colliding flows and HEDLA experiments: Star formation with the AstroBEAR AMR code. High Energy Density Physics, 2013, 9, 341-346.	1.5	2
89	NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS. Astrophysical Journal, 2013, 767, 84.	4.5	12
90	OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618. Astrophysical Journal, 2013, 772, 20.	4.5	51

#	Article	IF	Citations
91	MAGNETOHYDRODYNAMIC SHOCK-CLUMP EVOLUTION WITH SELF-CONTAINED MAGNETIC FIELDS. Astrophysical Journal, 2013, 774, 133.	4.5	16
92	Size of discs formed by wind accretion in binaries can be underestimated if the role of wind-driving force is ignored. Monthly Notices of the Royal Astronomical Society, 2013, 436, 904-909.	4.4	0
93	The formation and evolution of wind-capture discs in binary systems. Monthly Notices of the Royal Astronomical Society, 2013, 433, 295-306.	4.4	35
94	What is time?. Physics World, 2013, 26, 36-37.	0.0	0
95	Interaction of radiatively cooled plasma jets with collimated, supersonic gas flows. , 2012, , .		0
96	Jet-ambient interaction of a supersonic, radiatively-cooled jet in laboratory experiments. EAS Publications Series, 2012, 58, 127-131.	0.3	0
97	Experimental studies of supersonic radiatively cooled plasma jets. EAS Publications Series, 2012, 58, 133-136.	0.3	0
98	THE <i>CHANDRA</i> X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS. Astronomical Journal, 2012, 144, 58.	4.7	80
99	CONSEQUENCES OF MAGNETIC FIELD STRUCTURE FOR HEAT TRANSPORT IN MAGNETOHYDRODYNAMICS. Astrophysical Journal, 2012, 748, 24.	4.5	9
100	THE ILLUMINATION AND GROWTH OF CRL 2688: AN ANALYSIS OF NEW AND ARCHIVAL <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS. Astrophysical Journal, 2012, 745, 188.	4.5	21
101	THE EVOLUTION OF HETERGENEOUS "CLUMPY JETS― A PARAMETER STUDY. Astrophysical Journal, 2012, 746, 133.	4. 5	7
102	Laboratory astrophysics experiments studying hydrodynamic and magnetically-driven plasma jets. Journal of Physics: Conference Series, 2012, 370, 012002.	0.4	6
103	Interaction of a supersonic, radiatively cooled plasma jet with an ambient medium. Physics of Plasmas, 2012, 19, 022708.	1.9	31
104	ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS. Astrophysical Journal, 2012, 757, 66.	4.5	33
105	The impact of recent advances in laboratory astrophysics on our understanding of the cosmos. Reports on Progress in Physics, 2012, 75, 036901.	20.1	51
106	From bipolar to elliptical: simulating the morphological evolution of planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2055-2068.	4.4	40
107	Magnetic towers and binary-formed disks: New results for planetary nebula evolution. Proceedings of the International Astronomical Union, 2011, 7, 164-167.	0.0	0
108	Early results from ChanPLaNS: Mystery of hard X-ray emitting CSPNe. Proceedings of the International Astronomical Union, 2011, 7, 450-451.	0.0	0

#	Article	IF	CITATIONS
109	EXPLOSIVE OUTFLOWS POWERED BY THE DECAY OF NON-HIERARCHICAL MULTIPLE SYSTEMS OF MASSIVE STARS: ORION BN/KL. Astrophysical Journal, 2011, 727, 113.	4.5	103
110	FLUID DYNAMICS OF STELLAR JETS IN REAL TIME: THIRD EPOCH <i>HUBBLE SPACE TELESCOPE</i> HH 1, HH 34, AND HH 47. Astrophysical Journal, 2011, 736, 29.	4.5	79
111	Experimental Studies of Magnetically Driven Plasma Jets. Astrophysics and Space Science, 2011, 336, 41-46.	1.4	21
112	Modelling magnetically dominated and radiatively cooling jets. Proceedings of the International Astronomical Union, 2010, 6, 87-91.	0.0	0
113	Laboratory simulations of astrophysical jets. Proceedings of the International Astronomical Union, 2010, 6, 26-35.	0.0	2
114	Magnetically Driven Supersonic Plasma Jets in High Energy Density Experiments. , 2010, , .		0
115	ISOTROPICALLY DRIVEN VERSUS OUTFLOW DRIVEN TURBULENCE: OBSERVATIONAL CONSEQUENCES FOR MOLECULAR CLOUDS. Astrophysical Journal, 2010, 722, 145-157.	4.5	35
116	SELF-CONVERGENCE OF RADIATIVELY COOLING CLUMPS IN THE INTERSTELLAR MEDIUM. Astrophysical Journal, 2010, 722, 412-424.	4.5	41
117	Laboratory astrophysics and non-ideal equations of state: the next challenges forÂastrophysical MHD simulations. High Energy Density Physics, 2010, 6, 381-390.	1.5	2
118	Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch. Physics of Plasmas, 2010, 17, .	1.9	44
119	Bow shocks in ablated plasma streams for nested wire array z-pinches: A laboratory astrophysics testbed for radiatively cooled shocks. Physics of Plasmas, 2010, 17, .	1.9	17
120	HYPERSONIC BUCKSHOT: ASTROPHYSICAL JETS AS HETEROGENEOUS COLLIMATED PLASMOIDS. Astrophysical Journal, 2009, 695, 999-1005.	4.5	15
121	PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS. Astrophysical Journal, 2009, 692, 816-826.	4.5	36
122	SERENDIPITOUS < i>XMM-NEWTON < /i> DETECTION OF X-RAY EMISSION FROM THE BIPOLAR PLANETARY NEBULA Hb 5. Astrophysical Journal, 2009, 694, 1481-1484.	4.5	12
123	MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING. Astrophysical Journal, 2009, 707, 1485-1494.	4.5	16
124	LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110. Astrophysical Journal, 2009, 705, 1073-1094.	4.5	55
125	PROTOSTELLAR OUTFLOWS: NEW PERSPECTIVES ON MESOSCOPIC STRUCTURE AND MACROSCOPIC FEEDBACK. Modern Physics Letters A, 2009, 24, 1167-1185.	1.2	1
126	Laboratory experiments to study supersonic astrophysical flows interacting with clumpy environments. Astrophysics and Space Science, 2009, 322, 101-105.	1.4	11

#	Article	IF	Citations
127	Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory. Astrophysics and Space Science, 2009, 322, 19-23.	1.4	36
128	Astrophysical jets: Observations, numerical simulations, and laboratory experiments. Physics of Plasmas, 2009, 16, 041005.	1.9	22
129	EPISODIC MAGNETIC BUBBLES AND JETS: ASTROPHYSICAL IMPLICATIONS FROM LABORATORY EXPERIMENTS. Astrophysical Journal, 2009, 691, L147-L150.	4.5	70
130	SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE. Astrophysical Journal, Supplement Series, 2009, 182, 519-542.	7.7	100
131	Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in Laboratory Experiments. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 195-204.	0.3	1
132	OUTFLOW-DRIVEN TURBULENCE IN MOLECULAR CLOUDS. Astrophysical Journal, 2009, 695, 1376-1381.	4.5	71
133	Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory. , 2009, , 19-23.		0
134	Outflow Driven Turbulence in Star Forming Clouds. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 411-420.	0.3	0
135	Towards a spectral technique for determining material geometry around evolved stars: application to HD 179821. Monthly Notices of the Royal Astronomical Society, 2008, 388, 716-722.	4.4	6
136	Supersonic Radiatively Cooled Rotating Flows and Jets in the Laboratory. Physical Review Letters, 2008, 100, 035001.	7.8	40
137	The Interaction between a Pulsed Astrophysical Jet and Smallâ€Scale Heterogeneous Media. Astrophysical Journal, 2008, 672, 996-1005.	4.5	11
138	The Formation of Crystalline Dust in AGB Winds from Binary-induced Spiral Shocks. Astrophysical Journal, 2008, 675, L101-L104.	4.5	34
139	Proto–Planetary Nebulae as Explosions: Bullets versus Jets and Nebular Shaping. Astrophysical Journal, 2008, 679, 1327-1337.	4.5	37
140	Laboratory experiments to study supersonic astrophysical flows interacting with clumpy environments., 2008,, 101-105.		0
141	The evolution of magnetic tower jets in the laboratory. Physics of Plasmas, 2007, 14, 056501.	1.9	153
142	Magnetic Fields in Stellar Jets. Astrophysical Journal, 2007, 661, 910-918.	4.5	60
143	Isolated versus common envelope dynamos in planetary nebula progenitors. Monthly Notices of the Royal Astronomical Society, 2007, 376, 599-608.	4.4	114
144	Double-Pulse Laser-Driven Jets on OMEGA. Astrophysics and Space Science, 2007, 307, 47-50.	1.4	7

#	Article	IF	CITATIONS
145	3D MHD Simulations of Laboratory Plasma Jets. Astrophysics and Space Science, 2007, 307, 17-22.	1.4	8
146	Jet Deflection by a Quasi-Steady-State Side Wind in the Laboratory. Astrophysics and Space Science, 2007, 307, 29-34.	1.4	13
147	Laboratory Modeling of Standing Shocks and Radiatively Cooled Jets with Angular Momentum. Astrophysics and Space Science, 2007, 307, 51-56.	1.4	10
148	Numerical Simulations and Astrophysical Applications of Laboratory Jets at Omega. Astrophysics and Space Science, 2007, 307, 57-62.	1.4	17
149	Hypersonic Swizzle Sticks: Protostellar Turbulence, Outflows and Fossil Outflow Cavities. Astrophysics and Space Science, 2007, 307, 35-39.	1.4	2
150	Hypersonic Swizzle Sticks: Protostellar Turbulence, Outflows and Fossil Outflow Cavities. , 2007, , 35-39.		0
151	Outflowâ€driven Cavities: Numerical Simulations of Intermediaries of Protostellar Turbulence. Astrophysical Journal, 2006, 653, 416-424.	4.5	33
152	The formation of globules in planetary nebulae. Proceedings of the International Astronomical Union, 2006, 2, 271.	0.0	1
153	Grand Challenges in Planetary Nebulae Studies: Binary Evolution and MHD. Proceedings of the International Astronomical Union, 2006, 2, 293.	0.0	1
154	Hypersonic swizzle sticks: jets, fossil cavities and turbulence in molecular clouds. Proceedings of the International Astronomical Union, 2006, 2, 172-176.	0.0	0
155	Astrophysical Explosions Driven by a Rotating, Magnetized, Gravitating Sphere. Astrophysical Journal, 2006, 647, L45-L48.	4.5	38
156	V1647 Orionis: The X-Ray Evolution of a Pre-Main-Sequence Accretion Burst. Astrophysical Journal, 2006, 648, L43-L46.	4.5	33
157	Planets Rapidly Create Holes in Young Circumstellar Disks. Astrophysical Journal, 2006, 640, 1110-1114.	4.5	58
158	Observational Properties of Protoplanetary Disk Gaps. Astrophysical Journal, 2006, 637, L125-L128.	4.5	34
159	ASpitzer Space TelescopeInfrared Spectrograph Spectral Atlas of Luminous 8 μm Sources in the Large Magellanic Cloud. Astronomical Journal, 2006, 132, 1890-1909.	4.7	57
160	Laboratory Experiments with Supersonic Radiatively Cooled Jets: Jet Deflection via Crosswinds and Magnetic Tower Outflows. AIP Conference Proceedings, 2006, , .	0.4	1
161	Laboratory-astrophysics jet experiments at the omegaÂlaserÂfacility. European Physical Journal Special Topics, 2006, 133, 1019-1023.	0.2	2
162	Protostellar Jet Collisions Reduce the Efficiency of Outflowâ€Driven Turbulence in Molecular Clouds. Astrophysical Journal, 2006, 646, 1059-1069.	4.5	23

#	Article	IF	Citations
163	Laboratory Modeling of Standing Shocks and Radiatively Cooled Jets with Angular Momentum. , 2006, , 51-56.		1
164	Numerical Simulations and Astrophysical Applications of Laboratory Jets at Omega., 2006, , 57-62.		0
165	3D MHD Simulations of Laboratory Plasma Jets. , 2006, , 17-22.		0
166	Jet Deflection by a Quasi-Steady-State Side Wind in the Laboratory. , 2006, , 29-34.		0
167	Turbulence Driven by Outflowâ€blown Cavities in the Molecular Cloud of NGC 1333. Astrophysical Journal, 2005, 632, 941-955.	4.5	79
168	AstroBEAR: AMR for Astrophysical Applications - II: Tests and Applications. , 2005, , 463-472.		0
169	Wideâ∈Angle Windâ∈driven Bipolar Outflows: Highâ∈Resolution Models with Application to Source I of the Becklinâ∈Neugebauer/Kleinmannâ∈Łow OMCâ€I Region. Astrophysical Journal, 2005, 631, 1010-1021.	4.5	29
170	Driving Spiral Arms in the Circumstellar Disks of HD 100546 and HD 141569A. Astronomical Journal, 2005, 129, 2481-2495.	4.7	47
171	Magnetic tower outflows from a radial wire array Z-pinch. Monthly Notices of the Royal Astronomical Society, 2005, 361, 97-108.	4.4	145
172	A HED Laboratory Astrophysics Testbed Comes of Age: JET Deflection via Cross Winds. Astrophysics and Space Science, 2005, 298, 107-114.	1.4	8
173	Evolution and Fragmentation of Wide-Angle Wind Driven Molecular Outflows. Astrophysics and Space Science, 2005, 298, 317-322.	1.4	2
174	Enhanced X-ray variability from V1647 Ori, the young star in outburst illuminating McNeil's Nebula. Astronomy and Astrophysics, 2005, 438, 159-168.	5.1	25
175	Springs and Flings: Magneto-rotation Driven Outflows in Laboratory Experiments. AIP Conference Proceedings, 2005, , .	0.4	1
176	PNe as Laboratories of Astrophysical MHD. AIP Conference Proceedings, 2005, , .	0.4	0
177	AstroBEAR: AMR for Astrophysical Applications - I: Methods. , 2005, , 331-340.		3
178	Shock propagation in deuterium-tritium-saturated foam. Physics of Plasmas, 2005, 12, 062705.	1.9	25
179	Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets. Plasma Physics and Controlled Fusion, 2005, 47, B465-B479.	2.1	65
180	High-Energy-Density Laboratory Astrophysics Studies of Jets and Bow Shocks. Astrophysical Journal, 2005, 634, L77-L80.	4.5	90

#	Article	IF	CITATIONS
181	Direct-drive cryogenic target implosion performance on OMEGA. Physics of Plasmas, 2004, 11 , 2790-2797.	1.9	39
182	The Extraordinary Deaths of Ordinary Stars. Scientific American, 2004, 291, 50-59.	1.0	4
183	An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula. Nature, 2004, 430, 429-431.	27.8	63
184	Jet Deflection via Crosswinds: Laboratory Astrophysical Studies. Astrophysical Journal, 2004, 616, 988-997.	4.5	135
185	Application of Magnetohydrodynamic Disk Wind Solutions to Planetary and Protoplanetary Nebulae. Astrophysical Journal, 2004, 614, 737-744.	4.5	58
186	On the Planet and the Disk of C o K u TAURI/4. Astrophysical Journal, 2004, 612, L137-L140.	4.5	123
187	The Evolution of Protoplanetary Disk Edges. Astrophysical Journal, 2004, 612, 1152-1162.	4.5	41
188	Strings in the $\hat{\textbf{l}}\cdot$ Carinae Nebula: Hypersonic Radiative Cosmic Bullets. Astrophysical Journal, 2004, 613, 387-392.	4.5	12
189	A Laboratory Investigation of Supersonic Clumpy Flows: Experimental Design and Theoretical Analysis. Astrophysical Journal, 2004, 604, 213-221.	4.5	21
190	High Spatial Resolution Mid―and Farâ€infrared Imaging Study of NGC 2346. Astrophysical Journal, Supplement Series, 2004, 154, 302-308.	7.7	32
191	Laboratory Modeling of Radiatively Cooled Jets Using Conical Wire Array Z-pinches. AIP Conference Proceedings, 2004, , .	0.4	4
192	Collimated Outflow Formation via Binary Stars: Threeâ€Dimensional Simulations of Asymptotic Giant Branch Wind and Disk Wind Interactions. Astrophysical Journal, 2004, 600, 992-1003.	4.5	37
193	MHD Models and Laboratory Experiments of Jets. Astrophysics and Space Science, 2003, 287, 69-74.	1.4	3
194	A Compact X-Ray Source and Possible X-Ray Jets within the Planetary Nebula Menzel 3. Astrophysical Journal, 2003, 591, L37-L40.	4.5	55
195	X-Ray Emission from the Pre-planetary Nebula Henize 3-1475. Astrophysical Journal, 2003, 599, L87-L90.	4.5	26
196	Stellar Outflows Driven by Magnetized Wideâ€Angle Winds. Astrophysical Journal, 2003, 582, 269-276.	4.5	14
197	Fuel‧upply–limited Stellar Relaxation Oscillations: Application to Multiple Rings around Asymptotic Giant Branch Stars and Planetary Nebulae. Astrophysical Journal, 2003, 585, 983-992.	4.5	6
198	Mhd Models and Laboratory Experiments of Jets. , 2003, , 69-74.		0

#	Article	IF	CITATIONS
199	Hydrodynamic Interaction of Strong Shocks with Inhomogeneous Media. I. Adiabatic Case. Astrophysical Journal, 2002, 576, 832-848.	4.5	105
200	Experiments With Radiatively Cooled Supersonic Plasma Jets Generated in Conical Wire Array Z-Pinches. AIP Conference Proceedings, 2002, , .	0.4	0
201	Laboratory Astrophysics and Collimated Stellar Outflows: The Production of Radiatively Cooled Hypersonic Plasma Jets. Astrophysical Journal, 2002, 564, 113-119.	4.5	189
202	Shapes and Shaping of Planetary Nebulae. Annual Review of Astronomy and Astrophysics, 2002, 40, 439-486.	24.3	509
203	A global jet/circulation model for young stars. Astronomy and Astrophysics, 2002, 387, 187-200.	5.1	29
204	Bipolar Outflows in Stellar Astrophysics. , 2002, , 241-249.		0
205	Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature, 2001, 409, 485-487.	27.8	130
206	Magnetohydrodynamic Stellar and Disk Winds: Application to Planetary Nebulae. Astrophysical Journal, 2001, 546, 288-298.	4.5	92
207	Magnetic Collimation in Planetary Nebulae. Astrophysical Journal, 2001, 557, 250-255.	4.5	32
208	The Magnetohydrodynamic Kelvinâ€Helmholtz Instability. III. The Role of Sheared Magnetic Field in Planar Flows. Astrophysical Journal, 2000, 529, 536-547.	4.5	20
209	Large Proper-Motion Infrared [F[CLC]e[/CLC] [CSC]ii[/CSC]] Emission-Line Features in GGD 37. Astrophysical Journal, 2000, 528, L115-L118.	4.5	9
210	Influence of Magnetic Fields on Pulsed, Radiative Jets. Astrophysical Journal, 2000, 530, 834-850.	4.5	28
211	The Magnetohydrodynamic Kelvinâ€Helmholtz Instability: A Threeâ€dimensional Study of Nonlinear Evolution. Astrophysical Journal, 2000, 545, 475-493.	4.5	104
212	Interaction of Infall and Winds in Young Stellar Objects. Astrophysical Journal, 2000, 530, 923-938.	4.5	44
213	Structure and Stability of Keplerian Magnetohydrodynamic Jets. Astrophysical Journal, 2000, 533, 897-910.	4.5	33
214	The Propagation of Magnetocentrifugally Launched Jets. I Astrophysical Journal, 2000, 540, 342-361.	4.5	29
215	The Magnetic Geometry of Pulsed Astrophysical Jets. Astrophysical Journal, 2000, 545, L153-L156.	4.5	12
216	Bipolar outflows and the evolution of stars. New Astronomy Reviews, 1999, 43, 31-65.	12.8	57

#	Article	IF	CITATIONS
217	Ambipolar Diffusion in Young Stellar Object Jets. Astrophysical Journal, 1999, 524, 947-951.	4.5	22
218	[F[CLC]e[/CLC] [CSC]ii[/CSC]] Bubbles in the Young Planetary Nebula Hubble 12. Astrophysical Journal, 1999, 522, L69-L72.	4.5	23
219	3-D Simulations of the MHD Kelvin-Helmholtz Instability. Astrophysics and Space Science Library, 1999, , 95-98.	2.7	2
220	SN 1987A: Rotation and a Binary Companion. Astrophysical Journal, 1999, 512, 322-331.	4.5	26
221	A Divergenceâ€free Upwind Code for Multidimensional Magnetohydrodynamic Flows. Astrophysical Journal, 1998, 509, 244-255.	4.5	205
222	Effects of Cooling on the Propagation of Magnetized Jets. Astrophysical Journal, 1998, 494, L79-L83.	4.5	65
223	Where is the Doughnut? Luminous Blue Variable Bubbles and Aspherical Fast Winds. Astrophysical Journal, 1998, 500, 291-301.	4.5	42
224	[ITAL]Hubble[/ITAL] [ITAL]Space[/ITAL] [ITAL]T[/ITAL][ITAL]elescope[/ITAL] Wide Field Planetary Camera 2 Observations of î· Carinae. Astronomical Journal, 1998, 116, 2443-2461.	4.7	88
225	Outflow collimation in young stellar objects. Monthly Notices of the Royal Astronomical Society, 1997, 292, 795-807.	4.4	35
226	The MHD Kelvinâ€Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows. Astrophysical Journal, 1997, 482, 230-244.	4.5	76
227	The Timescale Correlation Method: Distances to Planetary Nebulae with Halos. Astrophysical Journal, 1997, 477, 226-234.	4.5	24
228	Hydrodynamic Collimation of YSO Jets. Symposium - International Astronomical Union, 1997, 182, 291-302.	0.1	0
229	The dynamics of Planetary Nebulae. Symposium - International Astronomical Union, 1997, 180, 190-196.	0.1	1
230	The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study. Astrophysical Journal, 1996, 460, 777.	4.5	119
231	A Mechanism for the Production of Jets and Ansae in Planetary Nebulae. Astrophysical Journal, 1996, 471, L53-L56.	4.5	62
232	Precessing jets and molecular outflows: a 3D numerical study. Monthly Notices of the Royal Astronomical Society, 1996, 282, 1114-1128.	4.4	28
233	Hydrodynamical Models of Outflow Collimation in Young Stellar Objects. Astrophysical Journal, 1996, 472, 684-702.	4.5	44
234	Radiation gasdynamics of planetary nebulae - V. Hot bubble and slow wind dynamics. Monthly Notices of the Royal Astronomical Society, 1995, 273, 401-410.	4.4	91

#	Article	IF	CITATIONS
235	Starspots and the Generation of Spherical Stellar Outflows. Astronomical Journal, 1995, 110, 2457.	4.7	19
236	Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for Multidimensional Flow. Astrophysical Journal, 1995, 452, 785.	4.5	115
237	The homunculus of Eta Carinae: an interacting stellar winds paradigm. Astrophysical Journal, 1995, 441, L77.	4.5	60
238	Precessing Jets and Point-Symmetric Nebulae. Astrophysical Journal, 1995, 447, .	4.5	57
239	The unity and diversity of Planetary or Nebulae radiation-gasdynamics of PNe, 2. Astronomical Journal, 1994, 107, 261.	4.7	31
240	The radiation gas dynamics of planetary nebulae. 4. From the Owl to the Eskimo. Astrophysical Journal, 1994, 430, 800.	4. 5	74
241	Spindles, Spheres and a Few Jets: The Radiation Gasdynamics of Planetary Nebulae. Symposium - International Astronomical Union, 1993, 155, 311-314.	0.1	0
242	Astrophysical gasdynamics confronts reality - The shaping of planetary nebulae. Astrophysical Journal, 1993, 404, L25.	4. 5	57
243	Is there a Connection Between Thermal Pulses and PNe Halos: An Approach to an Answer. Symposium - International Astronomical Union, 1993, 155, 365-365.	0.1	0
244	Collimation of astrophysical jets by inertial confinement. Nature, 1992, 355, 524-526.	27.8	53
245	Stellar wind paleontology - Shells and halos of planetary nebulae. Astronomical Journal, 1990, 100, 1903.	4.7	59
246	Quantum erasing the memory of Wigner's friend. Quantum - the Open Journal for Quantum Science, 0, 5, 498.	0.0	2