Jae-Hyuck Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763911/publications.pdf Version: 2024-02-01

INF-HVIICK SHIM

#	Article	IF	CITATIONS
1	The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. Journal of Bone Metabolism, 2022, 29, 1-15.	1.3	7
2	Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death and Differentiation, 2022, 29, 1625-1638.	11.2	12
3	Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Human Gene Therapy, 2022, 33, 782-788.	2.7	6
4	AAV-mediated delivery of osteoblast/osteoclast-regulating miRNAs for osteoporosis therapy. Molecular Therapy - Nucleic Acids, 2022, 29, 296-311.	5.1	9
5	Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage. International Journal of Medical Sciences, 2021, 18, 3353-3360.	2.5	9
6	Trabecular bone organoid model for studying the regulation of localized bone remodeling. Science Advances, 2021, 7, .	10.3	48
7	SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nature Communications, 2021, 12, 4611.	12.8	15
8	Deubiquitinating Enzyme USP8 Is Essential for Skeletogenesis by Regulating Wnt Signaling. International Journal of Molecular Sciences, 2021, 22, 10289.	4.1	3
9	MEKK2 mediates aberrant ERK activation in neurofibromatosis type I. Nature Communications, 2020, 11, 5704.	12.8	13
10	TAOK3 is a MAP3K contributing to osteoblast differentiation and skeletal mineralization. Biochemical and Biophysical Research Communications, 2020, 531, 497-502.	2.1	15
11	Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells, 2020, 9, 2073.	4.1	485
12	A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nature Communications, 2020, 11, 2289.	12.8	48
13	Bone-Targeting AAV-Mediated Gene Silencing in Osteoclasts for Osteoporosis Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 17, 922-935.	4.1	32
14	Assessment of ESCRT Protein CHMP5 Activity on Client Protein Ubiquitination by Immunoprecipitation and Western Blotting. Methods in Molecular Biology, 2019, 1998, 219-226.	0.9	4
15	Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nature Communications, 2019, 10, 2958.	12.8	70
16	CRBN Is a Negative Regulator of Bactericidal Activity and Autophagy Activation Through Inhibiting the Ubiquitination of ECSIT and BECN1. Frontiers in Immunology, 2019, 10, 2203.	4.8	20
17	The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis. International Journal of Molecular Sciences, 2019, 20, 1803.	4.1	84
18	A cell surface clicked navigation system to direct specific bone targeting. Bioorganic and Medicinal Chemistry, 2018, 26, 758-764.	3.0	2

Јае-Нуиск Ѕнім

#	Article	IF	CITATIONS
19	Bone Loss in Rheumatoid Arthritis: Basic Mechanisms and Clinical Implications. Calcified Tissue International, 2018, 102, 533-546.	3.1	93
20	Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature, 2018, 562, 133-139.	27.8	426
21	Targeting skeletal endothelium to ameliorate bone loss. Nature Medicine, 2018, 24, 823-833.	30.7	218
22	Post-translational control of T cell development by the ESCRT protein CHMP5. Nature Immunology, 2017, 18, 780-790.	14.5	29
23	c-Jun N-Terminal Kinases (JNKs) Are Critical Mediators of Osteoblast Activity In Vivo. Journal of Bone and Mineral Research, 2017, 32, 1811-1815.	2.8	37
24	Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nature Communications, 2016, 7, 13829.	12.8	40
25	Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death and Disease, 2016, 7, e2313-e2313.	6.3	49
26	MEKK2 mediates an alternative β-catenin pathway that promotes bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1226-35.	7.1	47
27	Ubiquitination of ECSIT is crucial for the activation of p65/p50 NF-κBs in Toll-like receptor 4 signaling. Molecular Biology of the Cell, 2015, 26, 151-160.	2.1	35
28	p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion. Journal of Biological Chemistry, 2015, 290, 284-295.	3.4	31
29	CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. Journal of Experimental Medicine, 2015, 212, 1283-1301.	8.5	56
30	Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1–TAB2 complex in TLR4 signaling. Cellular Signalling, 2015, 27, 2524-2533.	3.6	24
31	TAK1-ECSIT-TRAF6 Complex Plays a Key Role in the TLR4 Signal to Activate NF-κB. Journal of Biological Chemistry, 2014, 289, 35205-35214.	3.4	81
32	Mitogen-Activated Protein Kinase Pathways in Osteoblasts. Annual Review of Cell and Developmental Biology, 2013, 29, 63-79.	9.4	200
33	Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. Journal of Clinical Investigation, 2013, 123, 4010-4022.	8.2	53
34	Control of bone resorption in mice by Schnurri-3. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8173-8178.	7.1	31
35	MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. Journal of Clinical Investigation, 2011, 121, 4383-4392.	8.2	54
36	The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. Journal of Clinical Investigation, 2010, 120, 2457-2473.	8.2	343

Јае-Нуиск Ѕнім

#	Article	IF	CITATIONS
37	Response to Comment on "PDK1 Nucleates T Cell Receptor-Induced Signaling Complex for NF-ÂB Activation". Science, 2006, 312, 55b-55b.	12.6	5
38	CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. Journal of Cell Biology, 2006, 172, 1045-1056.	5.2	110
39	TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes and Development, 2005, 19, 2668-2681.	5.9	632