
Fernanda S Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach. Carbohydrate Polymers, 2022, 295, 119859.	10.2	12
2	Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. , 2021, 4, 44-68.		23
3	Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. Journal of Controlled Release, 2021, 331, 198-212.	9.9	35
4	Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers, 2021, 13, 1164.	3.7	84
5	Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine, 2021, 16, 1471-1485.	3.3	10
6	Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. International Journal of Pharmaceutics, 2021, 606, 120954.	5.2	34
7	Development of "on-demand―thermo-responsive hydrogels for anti-cancer drugs sustained release: Rational design, in silico prediction and in vitro validation in colon cancer models. Materials Science and Engineering C, 2021, 131, 112483.	7.3	20
8	Zileutonâ,"¢ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102106.	3.3	44
9	Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102267.	3.3	12
10	Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics, 2020, 12, 1146.	4.5	26
11	The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics, 2020, 12, 157.	4.5	19
12	Intracellular Delivery of Anti-SMC2 Antibodies against Cancer Stem Cells. Pharmaceutics, 2020, 12, 185.	4.5	16
13	Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 2020, 112, 110920.	7.3	65
14	The potential of nanomedicine to alter cancer stem cellÂdynamics: the impact of extracellular vesicles. Nanomedicine, 2020, 15, 2785-2800.	3.3	10
15	Sterilization Procedure for Temperature-Sensitive Hydrogels Loaded with Silver Nanoparticles for Clinical Applications. Nanomaterials, 2019, 9, 380.	4.1	21
16	AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells. Drug Delivery, 2018, 25, 961-972.	5.7	32
17	Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin. Chemical Engineering Journal, 2018, 340, 81-93.	12.7	26
18	Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells International, 2018, 2018, 1-12.	2.5	17

Fernanda S Andrade

#	Article	IF	CITATIONS
19	Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 211-238.	0.2	1
20	Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. Precision Nanomedicine, 2018, 1, 86-105.	0.8	6
21	Tissue-based in vitro and exÂvivoÂmodels for pulmonary permeability studies. , 2016, , 255-272.		1
22	Cell-based in vitro models for pulmonary permeability studies. , 2016, , 101-113.		3
23	Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Design, Development and Therapy, 2016, Volume 10, 2467-2475.	4.3	77
24	Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS Applied Materials & Interfaces, 2016, 8, 25741-25752.	8.0	20
25	Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine, 2016, 11, 2305-2317.	3.3	22
26	Lipid-based nanovesicles for nanomedicine. Chemical Society Reviews, 2016, 45, 6520-6545.	38.1	224
27	Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Pharmaceutical Research, 2016, 33, 2777-2793.	3.5	30
28	Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1621-1631.	3.3	39
29	Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability. International Journal of Pharmaceutics, 2015, 486, 195-206.	5.2	25
30	Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice. Pharmaceutical Research, 2014, 31, 1834-1845.	3.5	64
31	Pulmonary Delivery of Biopharmaceuticals. , 2014, , 169-195.		2
32	Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 2013, 65, 1816-1827.	13.7	187
33	Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 427-435.	4.3	225
34	<i>In Vitro</i> and <i>Ex Vivo</i> Evaluation of Polymeric Nanoparticles for Vaginal and Rectal Delivery of the Anti-HIV Drug Dapivirine. Molecular Pharmaceutics, 2013, 10, 2793-2807.	4.6	74
35	Hydrolyzed Galactomannan-Modified Nanoparticles and Flower-Like Polymeric Micelles for the Active Targeting of Rifampicin to Macrophages. Journal of Biomedical Nanotechnology, 2013, 9, 1076-1087.	1.1	77
36	Models to Predict Intestinal Absorption of Therapeutic Peptides and Proteins. Current Drug Metabolism, 2013, 14, 4-20.	1.2	76

Fernanda S Andrade

#	Article	IF	CITATIONS
37	Chitosan-Coated Solid Lipid Nanoparticles for Insulin Delivery. Methods in Enzymology, 2012, 508, 295-314.	1.0	78
38	Cell-based <i>in vitro</i> models for predicting drug permeability. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 607-621.	3.3	113
39	Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine, 2011, 6, 123-141.	3.3	62
40	Chitosan Formulations as Carriers for Therapeutic Proteins. Current Drug Discovery Technologies, 2011, 8, 157-172.	1.2	55
41	Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-14.	1.5	41
42	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	0
43	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	15
44	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
45	Lipoplexes and Polyplexes: Gene Therapy. , 0, , 4335-4347.		13