Fernanda S Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763859/publications.pdf

Version: 2024-02-01

45 papers 2,037 citations

257450 24 h-index 315739 38 g-index

46 all docs

46 docs citations

46 times ranked

3328 citing authors

#	Article	IF	CITATIONS
1	Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 427-435.	4.3	225
2	Lipid-based nanovesicles for nanomedicine. Chemical Society Reviews, 2016, 45, 6520-6545.	38.1	224
3	Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 2013, 65, 1816-1827.	13.7	187
4	Cell-based <i>in vitro </i> models for predicting drug permeability. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 607-621.	3.3	113
5	Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers, 2021, 13, 1164.	3.7	84
6	Chitosan-Coated Solid Lipid Nanoparticles for Insulin Delivery. Methods in Enzymology, 2012, 508, 295-314.	1.0	78
7	Hydrolyzed Galactomannan-Modified Nanoparticles and Flower-Like Polymeric Micelles for the Active Targeting of Rifampicin to Macrophages. Journal of Biomedical Nanotechnology, 2013, 9, 1076-1087.	1.1	77
8	Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Design, Development and Therapy, 2016, Volume 10, 2467-2475.	4.3	77
9	Models to Predict Intestinal Absorption of Therapeutic Peptides and Proteins. Current Drug Metabolism, 2013, 14, 4-20.	1.2	76
10	<i>In Vitro</i> and <i>Ex Vivo</i> Evaluation of Polymeric Nanoparticles for Vaginal and Rectal Delivery of the Anti-HIV Drug Dapivirine. Molecular Pharmaceutics, 2013, 10, 2793-2807.	4.6	74
11	Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 2020, 112, 110920.	7.3	65
12	Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice. Pharmaceutical Research, 2014, 31, 1834-1845.	3.5	64
13	Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine, 2011, 6, 123-141.	3.3	62
14	Chitosan Formulations as Carriers for Therapeutic Proteins. Current Drug Discovery Technologies, 2011, 8, 157-172.	1.2	55
15	Zileutonâ,,¢ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102106.	3.3	44
16	Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 2011, 1-14.	1.5	41
17	Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1621-1631.	3.3	39
18	Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. Journal of Controlled Release, 2021, 331, 198-212.	9.9	35

#	Article	IF	Citations
19	Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. International Journal of Pharmaceutics, 2021, 606, 120954.	5.2	34
20	AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells. Drug Delivery, 2018, 25, 961-972.	5.7	32
21	Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Pharmaceutical Research, 2016, 33, 2777-2793.	3.5	30
22	Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin. Chemical Engineering Journal, 2018, 340, 81-93.	12.7	26
23	Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics, 2020, 12, 1146.	4.5	26
24	Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability. International Journal of Pharmaceutics, 2015, 486, 195-206.	5.2	25
25	Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. , 2021, 4, 44-68.		23
26	Pharmacological and toxicological assessment of innovative self-assembled polymeric micelles as powders for insulin pulmonary delivery. Nanomedicine, 2016, 11, 2305-2317.	3.3	22
27	Sterilization Procedure for Temperature-Sensitive Hydrogels Loaded with Silver Nanoparticles for Clinical Applications. Nanomaterials, 2019, 9, 380.	4.1	21
28	Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25741-25752.	8.0	20
29	Development of "on-demand―thermo-responsive hydrogels for anti-cancer drugs sustained release: Rational design, in silico prediction and in vitro validation in colon cancer models. Materials Science and Engineering C, 2021, 131, 112483.	7.3	20
30	The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics, 2020, 12, 157.	4.5	19
31	Dynamism, Sensitivity, and Consequences of Mesenchymal and Stem-Like Phenotype of Cancer Cells. Stem Cells International, 2018, 2018, 1-12.	2.5	17
32	Intracellular Delivery of Anti-SMC2 Antibodies against Cancer Stem Cells. Pharmaceutics, 2020, 12, 185.	4.5	16
33	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	15
34	Lipoplexes and Polyplexes: Gene Therapy. , 0, , 4335-4347.		13
35	Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102267.	3.3	12
36	Smart and eco-friendly N-isopropylacrylamide and cellulose hydrogels as a safe dual-drug local cancer therapy approach. Carbohydrate Polymers, 2022, 295, 119859.	10.2	12

#	Article	IF	CITATIONS
37	Pluronic F127 micelles improve the stability and enhance the anticancer stem cell efficacy of citral in breast cancer. Nanomedicine, 2021, 16, 1471-1485.	3.3	10
38	The potential of nanomedicine to alter cancer stem cellÂdynamics: the impact of extracellular vesicles. Nanomedicine, 2020, 15, 2785-2800.	3.3	10
39	Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. Precision Nanomedicine, 2018, 1, 86-105.	0.8	6
40	Cell-based in vitro models for pulmonary permeability studies. , 2016, , 101-113.		3
41	Pulmonary Delivery of Biopharmaceuticals. , 2014, , 169-195.		2
42	Tissue-based in vitro and exÂvivoÂmodels for pulmonary permeability studies. , 2016, , 255-272.		1
43	Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 211-238.	0.2	1
44	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
45	Micelle-based Systems for Pulmonary Drug Delivery and Targeting. Drug Delivery Letters, 2011, 1, 171-185.	0.5	0