Tsuyoshi Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4763005/publications.pdf Version: 2024-02-01

		117625	175258
96	3,152	34	52
papers	citations	h-index	g-index
133	133	133	2431
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. Journal of Hazardous Materials, 2022, 424, 127250.	12.4	9
2	Substituent Effects of Tetracoordinate Boron in Organic Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	10
3	Synthesis of Pentaarylcyclobutenylrhodium(I) Complexes and Their Reactivity and Initiation Mechanism in Polymerization of Monosubstituted Acetylenes. Organometallics, 2022, 41, 472-479.	2.3	1
4	Well ontrolled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie, 2022, 134, .	2.0	1
5	Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
6	Titelbild: Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis (Angew. Chem. 17/2022). Angewandte Chemie, 2022, 134, .	2.0	0
7	Frontispiece: Substituent Effects of Tetracoordinate Boron in Organic Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	0
8	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
9	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	2.0	0
10	Frontispiece: Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
11	Frontispiz: Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€ S oluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	2.0	0
12	Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal. Chemosphere, 2022, 307, 135671.	8.2	6
13	Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chemical Engineering Journal, 2021, 407, 127225.	12.7	36
14	Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. Journal of Hazardous Materials, 2021, 410, 124569.	12.4	54
15	Strategy for the Use of Molecular Oxygen in Organic Synthesis. Synlett, 2021, 32, 573-581.	1.8	5
16	Synthesis of Stereoregular Telechelic Poly(phenylacetylene)s: Facile Terminal Chain-End Functionalization of Poly(phenylacetylene)s by Terminative Coupling with Acrylates and Acrylamides in Rhodium-Catalyzed Living Polymerization of Phenylacetylenes. Journal of the American Chemical Society, 2021, 143, 3604-3612.	13.7	18
17	Helical springs as a color indicator for determining chirality and enantiomeric excess. Science Advances, 2021, 7, .	10.3	44
18	Rhodium(I) Complexes Bearing an Aryla€Substituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie - International Edition, 2021, 60, 22201-22206.	13.8	10

#	Article	IF	CITATIONS
19	Rhodium(I) Complexes Bearing an Arylâ€Substituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie, 2021, 133, 22375-22380.	2.0	5
20	Understanding the Polymerization of Diphenylacetylenes with Tantalum(V) Chloride and Cocatalysts: Production of Cyclic Poly(diphenylacetylene)s by Low-Valent Tantalum Species Generated in Situ. Journal of the American Chemical Society, 2021, 143, 16136-16146.	13.7	16
21	Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices. Journal of Hazardous Materials, 2021, 418, 126308.	12.4	21
22	Advances in chemistry of N-heterocyclic carbene boryl radicals. Chemical Society Reviews, 2021, 50, 8995-9021.	38.1	75
23	Radical <i>trans</i> -Hydroboration of Substituted 1,3-Diynes with an <i>N</i> -Heterocyclic Carbene Borane. Organic Letters, 2021, 23, 1071-1075.	4.6	18
24	The Thermal Rearrangement of an NHC‣igated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie - International Edition, 2020, 59, 903-909.	13.8	18
25	The Thermal Rearrangement of an NHCâ€Ligated 3â€Benzoborepin to an NHCâ€Boranorcaradiene. Angewandte Chemie, 2020, 132, 913-919.	2.0	8
26	Dithiocarbamate-modified cellulose-based sorbents with high storage stability for selective removal of arsenite and hazardous heavy metals. RSC Advances, 2020, 10, 30238-30244.	3.6	7
27	Frontispiece: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
28	Frontispiz: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, .	2.0	0
29	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, 14882-14890.	2.0	3
30	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	2.0	8
31	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	13.8	64
32	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Wellâ€Controlled Living Polymerization of Phenylacetylenes. Angewandte Chemie, 2020, 132, 8748-8758.	2.0	10
33	Revisiting Polyfluoroarenes as Radical Acceptors: Radical C–F Bond Borylation of Polyfluoroarenes with N-Heterocyclic Carbene Boranes and Synthesis of Borane-Containing Liquid Crystals. Organic Letters, 2020, 22, 2054-2059.	4.6	19
34	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Wellâ€Controlled Living Polymerization of Phenylacetylenes. Angewandte Chemie - International Edition, 2020, 59, 8670-8680.	13.8	33
35	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, 14772-14780.	13.8	17
36	Boryl Radical Addition to Multiple Bonds in Organic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 6308-6319.	2.4	70

Тѕичоѕні Талідисні

#	Article	IF	CITATIONS
37	Esters as Radical Acceptors: βâ€NHCâ€Borylalkenyl Radicals Induce Lactonization by Câ^'C Bond Formation/Cleavage on Esters. Angewandte Chemie - International Edition, 2019, 58, 6357-6361.	13.8	37
38	Esters as Radical Acceptors: βâ€NHCâ€Borylalkenyl Radicals Induce Lactonization by Câ^'C Bond Formation/Cleavage on Esters. Angewandte Chemie, 2019, 131, 6423-6427.	2.0	16
39	Triptycene-Based Ladder Polymers with One-Handed Helical Geometry. Journal of the American Chemical Society, 2019, 141, 4696-4703.	13.7	84
40	Development of Mitsunobu Reagents Recyclable by Aerobic Oxidation and the Application to Catalytic Mitsunobu Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 584-595.	0.1	1
41	Systematic Evaluation of 2-Arylazocarboxylates and 2-Arylazocarboxamides as Mitsunobu Reagents. Journal of Organic Chemistry, 2018, 83, 4712-4729.	3.2	13
42	Identification of enzymes responsible for dantrolene metabolism in the human liver: A clue to uncover the cause of liver injury. Biochemical Pharmacology, 2018, 151, 69-78.	4.4	29
43	Radical <i>trans</i> â€Hydroboration of Alkynes with Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International Edition, 2018, 57, 9485-9490.	13.8	82
44	Radical <i>trans</i> â€Hydroboration of Alkynes with Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie, 2018, 130, 9629-9634.	2.0	26
45	Borylative Radical Cyclizations of Benzo[3,4]cyclodecâ€3â€eneâ€1,5â€diynes and Nâ€Heterocyclic Carbeneâ€Boranes. Chemistry - A European Journal, 2017, 23, 5404-5409.	3.3	72
46	Frontispiece: Borylative Radical Cyclizations of Benzo[3,4]cyclodecâ€3â€eneâ€1,5â€diynes and Nâ€Heterocyclic Carbeneâ€Boranes. Chemistry - A European Journal, 2017, 23, .	3.3	0
47	Recent Advances in Reactions of Heteroatom-Centered Radicals. Synthesis, 2017, 49, 3511-3534.	2.3	33
48	N-Heterocyclic Carbene Boranes are Hydrogen Donors in Masamune–Bergman Reactions of Benzo[3,4]cyclodec-3-ene-1,5-diynes. Journal of Organic Chemistry, 2017, 82, 13034-13042.	3.2	16
49	Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chemical Science, 2016, 7, 5148-5159.	7.4	71
50	The "Fully Catalytic System―in Mitsunobu Reaction Has Not Been Realized Yet. Organic Letters, 2016, 18, 4036-4039.	4.6	51
51	Catalytic Aerobic Oxidation of Arylhydrazides with Iron Phthalocyanine. Advanced Synthesis and Catalysis, 2015, 357, 3346-3352.	4.3	36
52	Hydroboration of Arynes Formed by Hexadehydro-Diels–Alder Cyclizations with N-Heterocyclic Carbene Boranes. Organic Letters, 2015, 17, 3450-3453.	4.6	29
53	A New Method for the Synthesis of 1,4-Diols: C(sp3)–H Hydroxylation Induced by Iron-Catalyzed Redox Hydration of Alkenes. Synlett, 2014, 25, 2531-2535.	1.8	2
54	Direct Synthesis of 1,4â€Diols from Alkenes by Ironâ€Catalyzed Aerobic Hydration and CH Hydroxylation. Angewandte Chemie - International Edition, 2014, 53, 2730-2734.	13.8	80

Tsuyoshi Taniguchi

#	Article	IF	CITATIONS
55	Hydroboration of Arynes with Nâ€Heterocyclic Carbene Boranes. Angewandte Chemie - International Edition, 2014, 53, 13150-13154.	13.8	42
56	Redox Divergent Synthesis of Fawcettimineâ€Type <i>Lycopodium</i> Alkaloids. Chemistry - A European Journal, 2014, 20, 9613-9619.	3.3	19
57	Multifunctionalization of alkenes via aerobic oxynitration and sp3 C–H oxidation. Chemical Communications, 2013, 49, 2198.	4.1	62
58	Recyclable Mitsunobu Reagents: Catalytic Mitsunobu Reactions with an Iron Catalyst and Atmospheric Oxygen. Angewandte Chemie - International Edition, 2013, 52, 4613-4617.	13.8	85
59	Syntheses of (±)-Serratine, (±)-Lycoposerramine T, and (±)-Lycopoclavamine B. Organic Letters, 2013, 15, 2140-2143.	4.6	24
60	Memory of chirality in rebound cyclizations of α-amide radicals. Canadian Journal of Chemistry, 2013, 91, 1-5.	1.1	9
61	Synthesis of Alkaloids Using Radical Cyclizations. Heterocycles, 2013, 87, 527.	0.7	20
62	α-Fluorohydrazones as useful precursors in nucleophilic substitutions. Tetrahedron Letters, 2013, 54, 4102-4105.	1.4	14
63	Rücktitelbild: Recyclable Mitsunobu Reagents: Catalytic Mitsunobu Reactions with an Iron Catalyst and Atmospheric Oxygen (Angew. Chem. 17/2013). Angewandte Chemie, 2013, 125, 4794-4794.	2.0	0
64	Aerobic radical multifunctionalization of alkenes using tert-butyl nitrite and water. Beilstein Journal of Organic Chemistry, 2013, 9, 1713-1717.	2.2	14
65	Reductions of aldehydes and ketones with a readily available N-heterocyclic carbene borane and acetic acid. Beilstein Journal of Organic Chemistry, 2013, 9, 675-680.	2.2	23
66	Synthesis of Natural Products Using Radical Cascades. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 229-236.	0.1	1
67	Synthesis of the Core of Actinophyllic Acid Using a Transannular Acyl Radical Cyclization. Organic Letters, 2012, 14, 1656-1658.	4.6	43
68	Iodine-Mediated α-Acetoxylation of 2,3-Disubstituted Indoles. Organic Letters, 2012, 14, 6088-6091.	4.6	37
69	Silica Gel Promotes Reductions of Aldehydes and Ketones by <i>N</i> -Heterocyclic Carbene Boranes. Organic Letters, 2012, 14, 4540-4543.	4.6	51
70	Identification of a phenanthrene derivative as a potent anticancer drug with Pim kinase inhibitory activity. Cancer Science, 2012, 103, 107-115.	3.9	14
71	Iron-mediated one-pot formal nitrocyclization onto unactivated alkenes. Organic and Biomolecular Chemistry, 2011, 9, 653-655.	2.8	12
72	Esterification via Iron-Catalyzed Activation of Triphenylphosphine with Air. ACS Catalysis, 2011, 1, 1469-1474.	11.2	35

Тѕичоѕні Талідисні

#	Article	IF	CITATIONS
73	Iron-catalyzed sulfonyl radical formations from sulfonylhydrazides and oxidative addition to alkenes. Organic and Biomolecular Chemistry, 2011, 9, 3151.	2.8	158
74	Synthesis of β-hydroxyphosphonates by iron-catalyzed oxidative addition of phosphonyl radicals to alkenes. Tetrahedron Letters, 2011, 52, 4768-4770.	1.4	47
75	Oxidative Nitration of Alkenes with <i>tert</i> â€Butyl Nitrite and Oxygen. Advanced Synthesis and Catalysis, 2011, 353, 2643-2647.	4.3	97
76	A Mild Oxidative Aryl Radical Addition into Alkenes by Aerobic Oxidation of Arylhydrazines. Chemistry - A European Journal, 2011, 17, 4307-4312.	3.3	105
77	Water in Amine-Mediated Single Electron Transfer Reaction of N-Allylic Trichloroacetamides. Heterocycles, 2010, 80, 657.	0.7	8
78	Iron-Catalyzed Redox Radical Cyclizations of 1,6-Dienes and Enynes. Organic Letters, 2010, 12, 112-115.	4.6	95
79	Identification of stemonamide synthetic intermediates as a novel potent anticancer drug with an apoptosisâ€inducing ability. International Journal of Cancer, 2010, 127, 474-484.	5.1	15
80	Ironâ€Catalyzed Oxidative Addition of Alkoxycarbonyl Radicals to Alkenes with Carbazates and Air. Angewandte Chemie - International Edition, 2010, 49, 10154-10157.	13.8	177
81	Iron-Mediated Radical Nitro-Cyclization Reaction of 1,6-Dienes. Organic Letters, 2010, 12, 124-126.	4.6	68
82	Iron-Mediated Radical Halo-Nitration of Alkenes. Journal of Organic Chemistry, 2010, 75, 8126-8132.	3.2	85
83	Novel synthesis of 3-aminopropionitriles by ring opening of 2-oxazolidinones with cyanide ion. Tetrahedron Letters, 2009, 50, 4857-4858.	1.4	7
84	Reductive Addition of the Benzenethiyl Radical to Alkynes by Amine-Mediated Single Electron Transfer Reaction to Diphenyl Disulfide. Organic Letters, 2009, 11, 3298-3301.	4.6	51
85	Formal Total Synthesis of Haouamine A. Journal of Organic Chemistry, 2009, 74, 2624-2626.	3.2	22
86	Asymmetric Total Synthesis and Revised Structure of Cephalezomine H. Journal of Organic Chemistry, 2009, 74, 7592-7594.	3.2	17
87	8-Endo-Selective Aryl Radical Cyclization Leading to 3-Benzazocines. Heterocycles, 2009, 77, 575.	0.7	5
88	Synthesis of nitrogen-containing heterocycles using exo- and endo-selective radical cyclizations onto enamides. Tetrahedron, 2008, 64, 2634-2641.	1.9	18
89	Synthesis of (â^')-trachelanthamidine using a single electron transfer reaction in 1,4-dimethylpiperazine. Tetrahedron, 2008, 64, 7771-7773.	1.9	31
90	Total synthesis of (±)-stemonamide, (±)-isostemonamide, (±)-stemonamine, and (±)-isostemonamine using a radical cascade. Tetrahedron, 2008, 64, 8773-8779.	1.9	39

#	Article	IF	CITATIONS
91	Total Synthesis of (±)-Stemonamide and (±)-Isostemonamide Using a Radical Cascade. Organic Letters, 2008, 10, 197-199.	4.6	64
92	Short Synthesis of (â^')-Cephalotaxine Using a Radical Cascade. Organic Letters, 2008, 10, 4129-4131.	4.6	39
93	Role of 1,4-dimethylpiperazine in radical cyclizations. Arkivoc, 2008, 2008, 7-16.	0.5	9
94	Concise Synthesis of the Tricyclic Skeleton of Cylindricines Using a Radical Cascade Involving 6-EndoSelective Cyclization. Synlett, 2005, 2005, 1179-1181.	1.8	2
95	A Short Synthesis of Lennoxamine Using a Radical Cascade. Organic Letters, 2005, 7, 4389-4390.	4.6	51
96	7-endo Selective Aryl Radical Cyclization onto Enamides Leading to 3-Benzazepines:  Concise Construction of a Cephalotaxine Skeleton. Journal of Organic Chemistry, 2005, 70, 1922-1925.	3.2	48