
Aline Dantas de Araujo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/476300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides. Angewandte Chemie, 2022, 134, .	2.0	2
2	Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
3	Landscaping macrocyclic peptides: stapling hDM2-binding peptides for helicity, protein affinity, proteolytic stability and cell uptake. RSC Chemical Biology, 2022, 3, 895-904.	4.1	9
4	Mechanische VerstÃ r kung von Coiled Coils mit Lactam und Histidinâ€Metallâ€Klammern. Angewandte Chemie, 2021, 133, 234-239.	2.0	3
5	Fortified Coiled Coils: Enhancing Mechanical Stability with Lactam or Metal Staples. Angewandte Chemie - International Edition, 2021, 60, 232-236.	13.8	14
6	Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 2021, 20, 3.	19.2	191
7	Lateâ€Stage Hydrocarbon Conjugation and Cyclisation in Synthetic Peptides and Proteins. ChemBioChem, 2021, 22, 1784-1789.	2.6	3
8	A Novel Longâ€Range n to Ï€* Interaction Secures the Smallest known αâ€Helix in Water. Angewandte Chemie - International Edition, 2019, 58, 18873-18877.	13.8	23
9	A Novel Longâ€Range n to ï€* Interaction Secures the Smallest known αâ€Helix in Water. Angewandte Chemie, 2019, 131, 19049-19053.	2.0	8
10	Chemically Diverse Helix-Constrained Peptides Using Selenocysteine Crosslinking. Organic Letters, 2018, 20, 1453-1456.	4.6	21
11	Contiguous hydrophobic and charged surface patches in short helix-constrained peptides drive cell permeability. Organic and Biomolecular Chemistry, 2018, 16, 367-371.	2.8	26
12	Bicyclic Helical Peptides as Dual Inhibitors Selective for Bcl2A1 and Mcl-1 Proteins. Journal of Medicinal Chemistry, 2018, 61, 2962-2972.	6.4	47
13	Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines, 2018, 6, 90.	3.2	7
14	Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor. Bioconjugate Chemistry, 2017, 28, 1669-1676.	3.6	6
15	Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling. European Journal of Medicinal Chemistry, 2017, 127, 703-714.	5.5	19
16	Electrophilic Helical Peptides That Bond Covalently, Irreversibly, and Selectively in a Protein–Protein Interaction Site. ACS Medicinal Chemistry Letters, 2017, 8, 22-26.	2.8	25
17	Development of cellâ€penetrating peptideâ€based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Biopolymers, 2016, 106, 853-863.	2.4	29
18	Stapling peptides using cysteine crosslinking. Biopolymers, 2016, 106, 843-852.	2.4	99

Aline Dantas de Araujo

#	Article	IF	CITATIONS
19	Helix Nucleation by the Smallest Known αâ€Helix in Water. Angewandte Chemie - International Edition, 2016, 55, 8275-8279.	13.8	40
20	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
21	Comparative αâ€Helicity of Cyclic Pentapeptides in Water. Angewandte Chemie - International Edition, 2014, 53, 6965-6969.	13.8	153
22	Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins?. Antioxidants and Redox Signaling, 2013, 19, 1976-1980.	5.4	16
23	Cyclization of Peptides by using Selenolanthionine Bridges. Angewandte Chemie - International Edition, 2012, 51, 10298-10302.	13.8	51
24	Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteineâ€Assisted Folding. Angewandte Chemie - International Edition, 2011, 50, 6527-6529.	13.8	88
25	Synthesis of Tripeptide Mimetics Based on Dihydroquinolinone and Benzoxazinone Scaffolds. Chemistry - A European Journal, 2011, 17, 13983-13986.	3.3	8
26	<i>p</i> â€Nitrobenzyl protection for cysteine and selenocysteine: A more stable alternative to the acetamidomethyl group. Biopolymers, 2010, 94, 423-432.	2.4	17
27	Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry, 2010, 53, 8585-8596.	6.4	112
28	Direct Visualization of Disulfide Bonds through Diselenide Proxies Using ⁷⁷ Se NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 9312-9314.	13.8	63
29	Diels–Alder Ligation of Peptides and Proteins. Chemistry - A European Journal, 2006, 12, 6095-6109.	3.3	82
30	Diels-Alder Ligation and Surface Immobilization of Proteins. Angewandte Chemie - International Edition, 2006, 45, 296-301.	13.8	149
31	A Mild Method for the Preparation of 8-Substituted Xanthines from 5,6-Diaminouracils. Heterocycles, 1999, 51, 29.	0.7	8