Matthias Gaestel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762519/publications.pdf

Version: 2024-02-01

254 papers

25,934 citations

70 h-index 153 g-index

266 all docs 266 docs citations

266 times ranked 36214 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO Journal, 1999, 18, 4969-4980.	7.8	720
4	MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nature Cell Biology, 1999, 1, 94-97.	10.3	718
5	Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO Journal, 1997, 16, 221-229.	7.8	674
6	Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity against Oxidative Stress/Tumor Necrosis Factor \hat{l}_{\pm} by Phosphorylation. Journal of Biological Chemistry, 1999, 274, 18947-18956.	3.4	661
7	Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Letters, 1992, 313, 307-313.	2.8	516
8	TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord. Neuron, 2014, 83, 1098-1116.	8.1	504
9	MAPKAP kinases â€" MKs â€" two's company, three's a crowd. Nature Reviews Molecular Cell Biology, 2006, 7, 120-130.	37.0	402
10	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Regulates Tumor Necrosis Factor mRNA Stability and Translation Mainly by Altering Tristetraprolin Expression, Stability, and Binding to Adenine/Uridine-Rich Element. Molecular and Cellular Biology, 2006, 26, 2399-2407.	2.3	365
11	MK2 Targets AU-rich Elements and Regulates Biosynthesis of Tumor Necrosis Factor and Interleukin-6 Independently at Different Post-transcriptional Levels. Journal of Biological Chemistry, 2002, 277, 3065-3068.	3.4	361
12	Targeting innate immunity protein kinase signalling in inflammation. Nature Reviews Drug Discovery, 2009, 8, 480-499.	46.4	307
13	Genetic Dissection of the Cellular Pathways and Signaling Mechanisms in Modeled Tumor Necrosis Factor–induced Crohn's-like Inflammatory Bowel Disease. Journal of Experimental Medicine, 2002, 196, 1563-1574.	8.5	256
14	Leptomycin B-sensitive nuclear export of MAPKAP kinase 2is regulated by phosphorylation. EMBO Journal, 1998, 17, 3363-3371.	7.8	255
15	Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13956-13961.	7.1	253
16	Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO Journal, 2001, 20, 3760-3770.	7.8	222
17	Distinct Cellular Functions of MK2. Molecular and Cellular Biology, 2002, 22, 4827-4835.	2.3	218
18	The Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinases MK2 and MK3 Cooperate in Stimulation of Tumor Necrosis Factor Biosynthesis and Stabilization of p38 MAPK. Molecular and Cellular Biology, 2007, 27, 170-181.	2.3	211

#	Article	IF	CITATIONS
19	CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO Journal, 1997, 16, 1009-1022.	7.8	204
20	NAMPT is essential for the G-CSF–induced myeloid differentiation via a NAD+–sirtuin-1–dependent pathway. Nature Medicine, 2009, 15, 151-158.	30.7	195
21	Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO Journal, 2002, 21, 6505-6514.	7.8	191
22	P38 Mitogen Activated Protein Kinase Regulates Endothelial VCAM-1 Expression at the Post-transcriptional Level. Biochemical and Biophysical Research Communications, 1997, 230, 44-48.	2.1	189
23	p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation andÂinfection. Nature Cell Biology, 2017, 19, 1248-1259.	10.3	188
24	The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation. PLoS Genetics, 2012, 8, e1002977.	3.5	185
25	p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5375-5380.	7.1	159
26	The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. ELife, 2015, 4, .	6.0	159
27	MAPKAP Kinase 2 Phosphorylates Serum Response Factor in Vitro and in Vivo. Journal of Biological Chemistry, 1999, 274, 14434-14443.	3.4	154
28	Inactivation of Protein-tyrosine Phosphatases as Mechanism of UV-induced Signal Transduction. Journal of Biological Chemistry, 1999, 274, 26378-26386.	3.4	154
29	Analysis of the Interaction of Small Heat Shock Proteins with Unfolding Proteins. Journal of Biological Chemistry, 2003, 278, 18015-18021.	3.4	154
30	The Dynamics of Hsp25 Quaternary Structure. Journal of Biological Chemistry, 1999, 274, 14867-14874.	3.4	151
31	MAPK-activated Protein Kinase 2 Deficiency in Microglia Inhibits Pro-inflammatory Mediator Release and Resultant Neurotoxicity. Journal of Biological Chemistry, 2006, 281, 23658-23667.	3.4	148
32	In the Cellular Garden of Forking Paths: How p38 MAPKs Signal for Downstream Assistance. Biological Chemistry, 2002, 383, 1519-36.	2.5	146
33	MAPKAP Kinase 2-Deficient Mice Are Resistant to Collagen-Induced Arthritis. Journal of Immunology, 2006, 177, 1913-1917.	0.8	145
34	Small Heat-Shock Protein Family: Function in Health and Disease. Annals of the New York Academy of Sciences, 1998, 851, 28-35.	3.8	143
35	The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunology, 2007, 8, 1227-1235.	14.5	128
36	The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Research, 2016, 44, gkw474.	14.5	128

#	Article	IF	Citations
37	The MK5/PRAK Kinase and Myc Form a Negative Feedback Loop that Is Disrupted during Colorectal Tumorigenesis. Molecular Cell, 2011, 41, 445-457.	9.7	127
38	Scaffolding by ERK3 regulates MK5 in development. EMBO Journal, 2004, 23, 4770-4779.	7.8	124
39	CXCL12 and C5a trigger cell migration via a PAK1/2-p38αÂMAPK-MAPKAP-K2-HSP27 pathway. Cellular Signalling, 2006, 18, 1897-1905.	3.6	116
40	Cytoskeletal Changes in Hypoxic Pulmonary Endothelial Cells Are Dependent on MAPK-activated Protein Kinase MK2. Journal of Biological Chemistry, 2002, 277, 42596-42602.	3.4	114
41	Heat Shock Protein 27 Is a Substrate of cGMP-dependent Protein Kinase in Intact Human Platelets. Journal of Biological Chemistry, 2001, 276, 7108-7113.	3.4	112
42	Stress-induced Stimulation of Early Growth Response Gene-1 by p38/Stress-activated Protein Kinase 2 Is Mediated by a cAMP-responsive Promoter Element in a MAPKAP Kinase 2-independent Manner. Journal of Biological Chemistry, 1999, 274, 19559-19564.	3.4	109
43	cDNA sequence coding for a translationally controlled human tumor protein. Nucleic Acids Research, 1989, 17, 8367-8367.	14.5	108
44	Phosphorylation of HSF1 by MAPK-Activated Protein Kinase 2 on Serine 121, Inhibits Transcriptional Activity and Promotes HSP90 Binding. Journal of Biological Chemistry, 2006, 281, 782-791.	3.4	108
45	Mouse Hsp25, a small heat shock protein. FEBS Journal, 2000, 267, 1923-1932.	0.2	107
46	Role of p38α Map Kinase in Type I Interferon Signaling. Journal of Biological Chemistry, 2004, 279, 970-979.	3.4	106
47	MAPKAP kinases MK2 and MK3 in inflammation: Complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Biochemical Pharmacology, 2010, 80, 1915-1920.	4.4	106
48	RIG-I-mediated Activation of p38 MAPK Is Essential for Viral Induction of Interferon and Activation of Dendritic Cells. Journal of Biological Chemistry, 2009, 284, 10774-10782.	3.4	104
49	Molecular cloning, sequencing and expression in Escherichia coli of the 25-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. FEBS Journal, 1989, 179, 209-213.	0.2	102
50	Constitutive Activation of Mitogen-activated Protein Kinase-activated Protein Kinase 2 by Mutation of Phosphorylation Sites and an A-helix Motif. Journal of Biological Chemistry, 1995, 270, 27213-27221.	3.4	102
51	Regulation of Suppressor of Cytokine Signaling 3 (SOCS3) mRNA Stability by TNF- $\hat{l}\pm$ Involves Activation of the MKK6/p38MAPK/MK2 Cascade. Journal of Immunology, 2007, 178, 2813-2826.	0.8	101
52	αA-crystallin confers cellular thermoresistance. FEBS Letters, 1994, 355, 54-56.	2.8	95
53	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	16.8	93
54	Characterization of the Atypical MAPK ERK4 and Its Activation of the MAPK-activated Protein Kinase MK5. Journal of Biological Chemistry, 2006, 281, 35511-35519.	3.4	91

#	Article	IF	CITATIONS
55	Elimination of Protein Kinase MK5/PRAK Activity by Targeted Homologous Recombination. Molecular and Cellular Biology, 2003, 23, 7732-7741.	2.3	90
56	Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. Journal of Cell Science, 2010, 123, 947-959.	2.0	90
57	Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis. PLoS Genetics, 2014, 10, e1004558.	3.5	90
58	MK2 controls the level of negative feedback in the NF- $\hat{\mathbb{P}}$ B pathway and is essential for vascular permeability and airway inflammation. Journal of Experimental Medicine, 2007, 204, 1637-1652.	8.5	89
59	TLR7 ligand prevents allergen-induced airway hyperresponsiveness and eosinophilia in allergic asthma by a MYD88-dependent and MK2-independent pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L987-L995.	2.9	86
60	Protein Kinases as Small Molecule Inhibitor Targets in Inflammation. Current Medicinal Chemistry, 2007, 14, 2214-2234.	2.4	85
61	Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. Journal of Applied Physiology, 2004, 96, 1701-1713.	2.5	83
62	Hypo-osmotic cell swelling activates the p38 MAP kinase signalling cascade. FEBS Letters, 1996, 395, 133-136.	2.8	81
63	The p38 MAPK pathway inhibits tristetraprolinâ€directed decay of interleukinâ€10 and proâ€inflammatory mediator mRNAs in murine macrophages. FEBS Letters, 2009, 583, 1933-1938.	2.8	81
64	Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 2165-2175.	4.1	81
65	Over-expression of the small heat-shock protein, hsp25, inhibits growth of Ehrlich ascites tumor cells. FEBS Letters, 1992, 309, 297-302.	2.8	80
66	Ubc9 fusion–directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nature Methods, 2007, 4, 245-250.	19.0	80
67	Is MK2 (mitogen-activated protein kinase-activated protein kinase 2) the key for understanding post-transcriptional regulation of gene expression?. Biochemical Society Transactions, 2002, 30, 959-963.	3.4	77
68	Smooth muscle α-actin expression and myofibroblast differentiation by TGFβ are dependent upon MK2. Journal of Cellular Biochemistry, 2007, 100, 1581-1592.	2.6	76
69	Cross Talk between the Akt and p38α Pathways in Macrophages Downstream of Toll-Like Receptor Signaling. Molecular and Cellular Biology, 2013, 33, 4152-4165.	2.3	74
70	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2-Deficient Mice Show Increased Susceptibility to <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2002, 168, 4667-4673.	0.8	73
71	MAPKAP kinase 2â€deficiency prevents neurons from cell death by reducing neuroinflammation – relevance in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2008, 105, 2039-2052.	3.9	72
72	Abnormal Migration Phenotype of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2â^'/â^'Neutrophils in Zigmond Chambers Containing Formyl-Methionyl-Leucyl-Phenylalanine Gradients. Journal of Immunology, 2001, 167, 3953-3961.	0.8	71

#	Article	IF	CITATIONS
73	Supramolecular structure of the recombinant murine small heat shock protein hsp25. FEBS Letters, 1991, 288, 119-122.	2.8	70
74	Systemic Deficiency of the MAP Kinase–Activated Protein Kinase 2 Reduces Atherosclerosis in Hypercholesterolemic Mice. Circulation Research, 2007, 101, 1104-1112.	4.5	69
75	The Role of Mammalian MAPK Signaling in Regulation of Cytokine mRNA Stability and Translation. Journal of Interferon and Cytokine Research, 2014, 34, 220-232.	1.2	69
76	Structure and organisation of a murine gene encoding small heat-shock protein Hsp25. Gene, 1993, 128, 279-283.	2.2	68
77	Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNF1±- and hydrogen peroxide-induced cell death., 1998, 69, 436-452.		67
78	Hypoxia alters biophysical properties of endothelial cells via p38 MAPK- and Rho kinase-dependent pathways. American Journal of Physiology - Cell Physiology, 2005, 289, C521-C530.	4.6	65
79	MK2 and MK3 - a pair of isoenzymes?. Frontiers in Bioscience - Landmark, 2008, Volume, 5511.	3.0	65
80	Distinct Functions of the Mitogen-activated Protein Kinase-activated Protein (MAPKAP) Kinases MK2 and MK3. Journal of Biological Chemistry, 2011, 286, 24113-24124.	3 . 4	65
81	Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Scientific Reports, 2015, 5, 16478.	3.3	65
82	Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16856-16861.	7.1	64
83	Increased expression of heat-shock protein 27 kDa in Alzheimer disease. NeuroReport, 1993, 5, 14-16.	1.2	63
84	1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Letters, 1995, 369, 305-310.	2.8	63
85	Affinity purification of ARE-binding proteins identifies poly(A)-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochemical and Biophysical Research Communications, 2003, 301, 665-670.	2.1	63
86	The Extracellular Signal-Regulated Kinase 3 (Mitogen-Activated Protein Kinase 6) Tj ETQq0 0 0 rgBT /Overlock 10 Morphology. Molecular and Cellular Biology, 2012, 32, 2467-2478.	Tf 50 227 2.3	Td ([MAPK6 63
87	MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges. Frontiers in Cell and Developmental Biology, 2015, 3, 88.	3.7	62
88	Bispecific antibody-producing hybrid hybridomas selected by a fluorescence activated cell sorter. Journal of Immunological Methods, 1987, 96, 265-270.	1.4	61
89	Comparison of the homologous carboxy-terminal domain and tail of \hat{l}_{\pm} -crystallin and small heat shock protein. Molecular Biology Reports, 1993, 18, 209-215.	2.3	60
90	Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin Il–Induced Inflammation and Hypertension. Hypertension, 2011, 57, 245-254.	2.7	60

#	Article	IF	Citations
91	Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochemical Journal, 2008, 409, 711-722.	3.7	59
92	Regulation of vimentin intermediate filaments in endothelial cells by hypoxia. American Journal of Physiology - Cell Physiology, 2010, 299, C363-C373.	4.6	59
93	FRETâ€based detection of different conformations of MK2. EMBO Reports, 2001, 2, 703-708.	4.5	58
94	Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochemical and Biophysical Research Communications, 1989, 161, 843-850.	2.1	56
95	MAPKAP kinase 2 is activated by heat shock and TNF-α: In vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. Journal of Cellular Biochemistry, 1995, 57, 321-330.	2.6	56
96	PMA-induced activation of the p42/44ERK- and p38RK-MAP kinase cascades in HL-60 cells is PKC dependent but not essential for differentiation to the macrophage-like phenotype., 1997, 173, 310-318.		56
97	The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. International Journal of Biological Macromolecules, 1998, 22, 163-173.	7.5	55
98	Fluorescenceâ€based quantitative scratch wound healing assay demonstrating the role of MAPKAPKâ€2/3 in fibroblast migration. Cytoskeleton, 2009, 66, 1041-1047.	4.4	55
99	The MK2/3 cascade regulates AMPAR trafficking and cognitive flexibility. Nature Communications, 2014, 5, 4701.	12.8	55
100	Mitogen-activated Protein Kinase-activated Protein (MAPKAP) Kinase 2 Deficiency Protects Brain from Ischemic Injury in Mice. Journal of Biological Chemistry, 2002, 277, 43968-43972.	3.4	54
101	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MK2) Contributes to Secondary Damage after Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 13750-13759.	3.6	54
102	Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Research, 2011, 39, 2503-2518.	14.5	54
103	MK2/3 Are Pivotal for IL-33–Induced and Mast Cell–Dependent Leukocyte Recruitment and the Resulting Skin Inflammation. Journal of Immunology, 2016, 197, 3662-3668.	0.8	54
104	Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury. PLoS ONE, 2009, 4, e4600.	2.5	53
105	AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO Journal, 2012, 31, 3961-3975.	7.8	53
106	What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition. Biological Chemistry, 2013, 394, 1301-1315.	2.5	53
107	HDM2 phosphorylation by MAPKAP kinase 2. Oncogene, 2005, 24, 1965-1972.	5.9	52
108	Dimer structure as a minimum cooperative subunit of small heat-shock proteins. BBA - Proteins and Proteomics, 1995, 1253, 163-168.	2.1	49

#	Article	IF	CITATIONS
109	SB202190-Induced Cell Type-Specific Vacuole Formation and Defective Autophagy Do Not Depend on p38 MAP Kinase Inhibition. PLoS ONE, 2011, 6, e23054.	2.5	49
110	The electric potential profile across the erythrocyte membrane. Journal of Theoretical Biology, 1982, 96, 211-231.	1.7	48
111	Activation of p38 Mitogen-Activated Protein Kinase Contributes to the Early Cardiodepressant Action of Tumor Necrosis Factor. Journal of the American College of Cardiology, 2006, 48, 545-555.	2.8	48
112	Lack of MK2 Inhibits Myofibroblast Formation and Exacerbates Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 507-517.	2.9	48
113	TRIF Signaling Stimulates Translation of TNF-α mRNA via Prolonged Activation of MK2. Journal of Immunology, 2010, 184, 5842-5848.	0.8	48
114	MAPK-Activated Protein Kinases: Servant or Partner?. Annual Review of Biochemistry, 2022, 91, 505-540.	11.1	48
115	MAPKAP Kinase 2 (MK2)-Dependent and -Independent Models of Blister Formation in Pemphigus Vulgaris. Journal of Investigative Dermatology, 2014, 134, 68-76.	0.7	47
116	Analysis of Properties of Small Heat Shock Protein Hsp25 in MAPK-activated Protein Kinase 2 (MK2)-deficient Cells. Journal of Biological Chemistry, 2006, 281, 26966-26975.	3.4	44
117	GIGYF1/2-Driven Cooperation between ZNF598 and TTP in Posttranscriptional Regulation of Inflammatory Signaling. Cell Reports, 2019, 26, 3511-3521.e4.	6.4	44
118	MAPKAPK-2 Signaling Is Critical for Cutaneous Wound Healing. Journal of Investigative Dermatology, 2010, 130, 278-286.	0.7	43
119	Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition To Modulate Skeletal Muscle and Cardiomyocyte Function. Molecular and Cellular Biology, 2013, 33, 2586-2602.	2.3	43
120	ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation. Molecular and Cellular Biology, 2016, 36, 2208-2225.	2.3	43
121	<scp>IL</scp> â€33 regulates cytokine production and neutrophil recruitment via the p38 <scp>MAPK</scp> â€activated kinases <scp>MK</scp> 2/3. Immunology and Cell Biology, 2019, 97, 54-71.	2.3	42
122	Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. Journal of Cell Science, 2015, 128, 1877-1886.	2.0	41
123	p38 ^{MAPK} /MK2-mediated phosphorylation of RBM7 regulates the human nuclear exosome targeting complex. Rna, 2015, 21, 262-278.	3.5	40
124	Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 Mediates Apoptosis during Lung Vascular Permeability by Regulating Movement of Cleaved Caspase 3. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 932-941.	2.9	39
125	Phosphorylation is not essential for protection of L929 cells by Hsp25 against H2O2 -mediated disruption actin cytoskeleton, a protection which appears related to the redox change mediated by Hsp25. Cell Stress and Chaperones, 1998, 3, 177.	2.9	39
126	Gene deletion of MK2 inhibits TNF-α and IL-6 and protects against cerulein-induced pancreatitis. American Journal of Physiology - Renal Physiology, 2006, 290, G1298-G1306.	3.4	38

#	Article	IF	Citations
127	The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in the p38/TNF-α Pathway of Systemic and Cutaneous Inflammation. Journal of Investigative Dermatology, 2010, 130, 481-491.	0.7	38
128	The MAP kinase-activated protein kinase 2 contains a proline-rich SH3-binding domain. FEBS Letters, 1993, 336, 143-147.	2.8	37
129	MK2–TNF–Signaling Comes Full Circle. Trends in Biochemical Sciences, 2018, 43, 170-179.	7.5	37
130	Analysis of Chaperone Properties of Small Hsp's. , 2000, 99, 421-429.		36
131	Reduced Oxazolone-Induced Skin Inflammation in MAPKAP Kinase 2 Knockout Mice. Journal of Investigative Dermatology, 2009, 129, 891-898.	0.7	36
132	[28] Purification and characterization of small heat shock proteins. Methods in Enzymology, 1998, 290, 339-349.	1.0	35
133	A requirement of MAPKAPK2 in the uropod localization of PTEN during FMLP-induced neutrophil chemotaxis. Biochemical and Biophysical Research Communications, 2004, 316, 666-672.	2.1	35
134	Specificity of signaling from MAPKs to MAPKAPKs: Kinases' Tango Nuevo. Frontiers in Bioscience - Landmark, 2008, Volume, 6050.	3.0	35
135	MK2 regulates the early stages of skin tumor promotion. Carcinogenesis, 2009, 30, 2100-2108.	2.8	35
136	The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA. PLoS ONE, 2010, 5, e8671.	2.5	35
137	MAPK-activated Protein Kinase 2 Differentially Regulates Plasmodium falciparum Glycosylphosphatidylinositol-induced Production of Tumor Necrosis Factor-α and Interleukin-12 in Macrophages. Journal of Biological Chemistry, 2009, 284, 15750-15761.	3.4	34
138	Activation of Mitogen-activated Protein Kinase Kinase (MKK) 3 and MKK6 by Type I Interferons. Journal of Biological Chemistry, 2005, 280, 10001-10010.	3.4	33
139	Label-Free Protein-RNA Interactome Analysis Identifies Khsrp Signaling Downstream of the p38/Mk2 Kinase Complex as a Critical Modulator of Cell Cycle Progression. PLoS ONE, 2015, 10, e0125745.	2.5	32
140	Blockade of <scp>MK</scp> 2 is protective in inflammationâ€associated colorectal cancer development. International Journal of Cancer, 2016, 138, 770-775.	5.1	32
141	EMC10 (Endoplasmic Reticulum Membrane Protein Complex Subunit 10) Is a Bone Marrow–Derived Angiogenic Growth Factor Promoting Tissue Repair After Myocardial Infarction. Circulation, 2017, 136, 1809-1823.	1.6	32
142	MAPKAPK2-mediated LSP1 phosphorylation and FMLP-induced neutrophil polarization. Biochemical and Biophysical Research Communications, 2007, 358, 170-175.	2.1	31
143	The stress-activated protein kinases p38 \hat{l} ± \hat{l} 2 and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA replication arrest. Cell Cycle, 2012, 11, 3627-3637.	2.6	31
144	Treatment of Obese Insulin-Resistant Mice With an Allosteric MAPKAPK2/3 Inhibitor Lowers Blood Glucose and Improves Insulin Sensitivity. Diabetes, 2015, 64, 3396-3405.	0.6	31

#	Article	IF	Citations
145	MAP kinaseâ€activated protein kinases 2 and 3 are required for influenza A virus propagation and act <i>via</i> inhibition of PKR. FASEB Journal, 2010, 24, 4068-4077.	0.5	30
146	LPS-induced production of TNF- $\hat{l}\pm$ and IL-6 in mast cells is dependent on p38 but independent of TTP. Cellular Signalling, 2013, 25, 1339-1347.	3.6	30
147	Modulation of HSP27 alters hypoxiaâ€induced endothelial permeability and related signaling pathways. Journal of Cellular Physiology, 2009, 220, 600-610.	4.1	29
148	Biological monitoring of nonâ€thermal effects of mobile phone radiation: recent approaches and challenges. Biological Reviews, 2010, 85, 489-500.	10.4	29
149	MK2 Deletion in Mice Prevents Diabetes-Induced Perturbations in Lipid Metabolism and Cardiac Dysfunction. Diabetes, 2016, 65, 381-392.	0.6	29
150	Thiol/disulfide exchange between small heat shock protein 25 and glutathione. BBA - Proteins and Proteomics, 1998, 1388, 123-132.	2.1	28
151	Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic Acids Research, 2007, 35, e109-e109.	14.5	28
152	MAPKAP kinase MK2 maintains self-renewal capacity of haematopoietic stem cells. EMBO Journal, 2009, 28, 1392-1406.	7.8	28
153	p38 MAP Kinase and MAPKAP Kinases MK2/3 Cooperatively Phosphorylate Epithelial Keratins*. Journal of Biological Chemistry, 2010, 285, 33242-33251.	3.4	28
154	Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling. Journal of Cellular Physiology, 2012, 227, 1438-1445.	4.1	28
155	The p38-MK2/3 Module Is Critical for IL-33–Induced Signaling and Cytokine Production in Dendritic Cells. Journal of Immunology, 2018, 200, 1198-1206.	0.8	28
156	The Role of TTP Phosphorylation in the Regulation of Inflammatory Cytokine Production by MK2/3. Journal of Immunology, 2019, 203, 2291-2300.	0.8	28
157	p38 MAPK signalling regulates cytokine production in IL-33 stimulated Type 2 Innate Lymphoid cells. Scientific Reports, 2020, 10, 3479.	3.3	28
158	p38α Senses Environmental Stress To Control Innate Immune Responses via Mechanistic Target of Rapamycin. Journal of Immunology, 2013, 190, 1519-1527.	0.8	27
159	GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Scientific Reports, 2016, 6, 20007.	3.3	27
160	Proinflammatory Effect of Endothelial Microparticles Is Mitochondria Mediated and Modulated Through MAPKAPK2 (MAPK-Activated Protein Kinase 2) Leading to Attenuation of Cardiac Hypertrophy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1100-1112.	2.4	27
161	Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFI± production. Biochemical Journal, 2013, 456, 163-172.	3.7	26
162	The problem of pyridinyl imidazole class inhibitors of MAPK14/p38 \hat{l}_{\pm} and MAPK11/p38 \hat{l}_{\pm} in autophagy research. Autophagy, 2015, 11, 1425-1427.	9.1	26

#	Article	IF	Citations
163	Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation. Nucleic Acids Research, 2008, 37, e30-e30.	14.5	25
164	Expression of fibulin-6 in failing hearts and its role for cardiac fibroblast migration. Cardiovascular Research, 2014, 103, 509-520.	3.8	25
165	Characterization of the Proline-Rich Region of Mouse Mapkap Kinase2: Influence on Catalytic Properties and Binding to the c-abl-SH3 Domain in Vitro. Biochemical and Biophysical Research Communications, 1994, 203, 1188-1194.	2.1	24
166	Preoperative Treatment of Rectal Cancer with Radiation, Chemotherapy and Hyperthermia: Analysis of Treatment Efficacy and Heat-Shock Response. Radiation Research, 1999, 151, 479.	1.5	24
167	Expression of Heat Shock Protein 25 000 in Rat Uterus during Pregnancy and Pseudopregnancy1. Biology of Reproduction, 1996, 54, 1326-1335.	2.7	23
168	p38/SAPK2-Dependent Gene Expression in Jurkat T Cells. Biological Chemistry, 2000, 381, 193-8.	2.5	23
169	Distinct role of MAPKAPK-2 in the regulation of TNF gene expression by Toll-like receptor 7 and 9 ligands. Molecular Immunology, 2007, 44, 3482-3491.	2.2	23
170	Oncostatin M regulates SOCS3 mRNA stability via the MEK–ERK1/2-pathway independent of p38MAPK/MK2. Cellular Signalling, 2015, 27, 555-567.	3.6	23
171	Characterization of the expression and regulation of MK5 in the murine ventricular myocardium. Cellular Signalling, 2010, 22, 1063-1075.	3.6	22
172	Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. Cell Reports, 2019, 27, 2859-2870.e6.	6.4	22
173	Peptides as Signaling Inhibitors for Mammalian MAP Kinase Cascades. Current Pharmaceutical Design, 2009, 15, 2471-2480.	1.9	21
174	MAPKAP kinase 2 regulates IL-10 expression and prevents formation of intrahepatic myeloid cell aggregates during cytomegalovirus infections. Journal of Hepatology, 2016, 64, 380-389.	3.7	21
175	Septins: Active GTPases or just GTPâ€binding proteins?. Cytoskeleton, 2019, 76, 55-62.	2.0	21
176	P66ShcAinteracts with MAPKAP kinase 2 and regulates its activity. FEBS Letters, 2004, 564, 205-211.	2.8	20
177	MAPKAPK-2 modulates p38-MAPK localization and small heat shock protein phosphorylation but does not mediate the injury associated with p38-MAPK activation during myocardial ischemia. Cell Stress and Chaperones, 2009, 14, 477-489.	2.9	20
178	Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse remodelling and promotes endothelial healing after arterial injury. Thrombosis and Haemostasis, 2014, 112, 1264-1276.	3.4	20
179	Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells. Free Radical Biology and Medicine, 2015, 89, 34-46.	2.9	20
180	Differentiated macrophages acquire a pro-inflammatory and cell death–resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. Journal of Biological Chemistry, 2018, 293, 11913-11927.	3.4	20

#	Article	IF	Citations
181	Identification of a Phosphorylation Site on Skeletal Muscle Myosin Light Chain Kinase That Becomes Phosphorylated during Muscle Contraction. Archives of Biochemistry and Biophysics, 2002, 397, 224-231.	3.0	19
182	Sexual Dimorphism in MAPK-Activated Protein Kinase-2 (MK2) Regulation of RANKL-Induced Osteoclastogenesis in Osteoclast Progenitor Subpopulations. PLoS ONE, 2015, 10, e0125387.	2.5	19
183	Cytokine Storm. New England Journal of Medicine, 2021, 384, e59.	27.0	19
184	Crucial Roles of the Protein Kinases MK2 and MK3 in a Mouse Model of Glomerulonephritis. PLoS ONE, 2013, 8, e54239.	2.5	18
185	Stress-dependent phosphorylation of myocardin-related transcription factor A (MRTF-A) by the p38MAPK/MK2 axis. Scientific Reports, 2016, 6, 31219.	3.3	18
186	The MAPK-Activated Kinase MK2 Attenuates Dendritic Cell–Mediated Th1 Differentiation and Autoimmune Encephalomyelitis. Journal of Immunology, 2015, 195, 541-552.	0.8	17
187	Tumour necrosis factor- \hat{l} ± plays a significant role in the Aldara-induced skin inflammation in mice. British Journal of Dermatology, 2016, 174, 1011-1021.	1.5	17
188	<scp>TIP</scp> 30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Molecular Medicine, 2019, 11, e10018.	6.9	17
189	The MK2 cascade regulates mGluR-dependent synaptic plasticity and reversal learning. Neuropharmacology, 2019, 155, 121-130.	4.1	17
190	MAP-Kinase Activated Protein Kinase 2 Links Endothelial Activation and Monocyte/macrophage Recruitment in Arteriogenesis. PLoS ONE, 2015, 10, e0138542.	2.5	17
191	Lateral lipid distribution and phase transition in phosphatidylethanolamine/phosphatidylserine vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1983, 732, 405-411.	2.6	16
192	IFN-Â Regulation in Anti-CD4 Antibody-Induced T Cell Unresponsiveness. Journal of the American Society of Nephrology: JASN, 2004, 15, 695-703.	6.1	16
193	SEPT7 Interacts with KIF20A and Regulates the Proliferative State of Neural Progenitor Cells During Cortical Development. Cerebral Cortex, 2020, 30, 3030-3043.	2.9	16
194	MAPâ€kinaseâ€activated protein kinase 2 expression and activity is induced after neuronal depolarization. European Journal of Neuroscience, 2008, 28, 642-654.	2.6	15
195	Comparative Analysis of Two Gene-Targeting Approaches Challenges the Tumor-Suppressive Role of the Protein Kinase MK5/PRAK. PLoS ONE, 2015, 10, e0136138.	2.5	15
196	TPL2 meets p38MAPK: emergence of a novel positive feedback loop in inflammation. Biochemical Journal, 2016, 473, 2995-2999.	3.7	15
197	MK5 haplodeficiency attenuates hypertrophy and preserves diastolic function during remodeling induced by chronic pressure overload in the mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H46-H58.	3.2	15
198	Molecular mechanisms of phosphorylation-regulated TTP (tristetraprolin) action and screening for further TTP-interacting proteins. Biochemical Society Transactions, 2010, 38, 1632-1637.	3.4	14

#	Article	IF	CITATIONS
199	Monitoring protein–protein interactions in mammalian cells by <i>trans</i> >-SUMOylation. Biochemical Journal, 2011, 438, 495-503.	3.7	14
200	Noradrenaline enhances angiotensin II responses via p38 MAPK activation after hypoxia/reâ€oxygenation in renal interlobar arteries. Acta Physiologica, 2015, 213, 920-932.	3.8	14
201	IL- $1\hat{l}^2$ -induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification. Journal of Biological Chemistry, 2017, 292, 6291-6302.	3.4	14
202	Cdc42â€Borg4â€Septin7 axis regulates HSC polarity and function. EMBO Reports, 2021, 22, e52931.	4.5	14
203	Evidence for ahsp25-Specific Mechanism Involved in Transcriptional Activation by Heat Shock. Experimental Cell Research, 1998, 242, 285-293.	2.6	13
204	Adenosine increases calcium sensitivity via receptor-independent activation of the p38/MK2 pathway in mesenteric arteries. Acta Physiologica, 2008, 193, 37-46.	3.8	13
205	Deletion of MK2 signalling in vivo inhibits small Hsp phosphorylation but not diabetic nephropathy. Nephrology Dialysis Transplantation, 2008, 23, 1844-1853.	0.7	13
206	A dominant mutation in <i>MAPKAPK3</i> , an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Human Molecular Genetics, 2016, 25, 916-926.	2.9	13
207	Phosphorylation of steroid receptor coactivator-3 (SRC-3) at serine 857 is regulated by the p38MAPK-MK2 axis and affects NF-κB-mediated transcription. Scientific Reports, 2020, 10, 11388.	3.3	13
208	The anti-cancer drug cisplatin induces HSP25 in Ehrlich ascites tumor cells by a mechanism different from transcriptional stimulation influencing predominantly HSP25 translation., 1996, 66, 790-795.		12
209	Mitogen-activated protein kinase 2 regulates physiological and pathological bone turnover. Journal of Bone and Mineral Research, 2013, 28, 936-947.	2.8	12
210	MAPKAP kinase 3 suppresses <i>Ifng</i> gene expression and attenuates NK cell cytotoxicity and Th1 CD4 Tâ€cell development upon influenza A virus infection. FASEB Journal, 2014, 28, 4235-4246.	0.5	12
211	Inhibition of Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinase 2 (MK2) is Protective in Pulmonary Hypertension. Hypertension, 2021, 77, 1248-1259.	2.7	12
212	The protein kinase inhibitor SB203580 uncouples PMA-induced differentiation of HL-60 cells from phosphorylation of Hsp27. Cell Stress and Chaperones, 1997, 2, 41.	2.9	12
213	Extracellular-signal regulated kinase ($Erk1/2$), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture. Cellular Signalling, 2016, 28, 438-447.	3.6	11
214	Transcript levels for extracellular matrix proteins are altered in MK5-deficient cardiac ventricular fibroblasts. Journal of Molecular and Cellular Cardiology, 2019, 132, 164-177.	1.9	11
215	Analysis of Small Hsp Phosphorylation. , 2000, 99, 431-445.		10
216	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 Deficiency Reduces Insulin Sensitivity in High-Fat Diet-Fed Mice. PLoS ONE, 2014, 9, e106300.	2.5	10

#	Article	IF	CITATIONS
217	MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1281-H1296.	3.2	9
218	Germ Line Deletion Reveals a Nonessential Role of Atypical Mitogen-Activated Protein Kinase 6/Extracellular Signal-Regulated Kinase 3. Molecular and Cellular Biology, 2019, 39, .	2.3	9
219	Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. Journal of Biological Chemistry, 2020, 295, 4661-4672.	3.4	9
220	MK2 and Fas Receptor Contribute to the Severity of CNS Demyelination. PLoS ONE, 2014, 9, e100363.	2.5	8
221	Normal endothelial but impaired arterial development in MAP-Kinase activated protein kinase 2 (MK2) deficient mice. Vascular Cell, 2016, 8, 4.	0.2	8
222	ILâ€33â€activated murine mast cells control the dichotomy between RORγt ⁺ and Helios ⁺ <i>T</i> > _{regs} via the MK2/3â€mediated ILâ€6 production in vitro. European Journal of Immunology, 2019, 49, 2159-2171.	2.9	8
223	Cooperative and distinct functions of MK2 and MK3 in the regulation of the macrophage transcriptional response to lipopolysaccharide. Scientific Reports, 2019, 9, 11021.	3.3	8
224	The IL-33-induced p38-/JNK1/2-TNF \hat{l}_{\pm} axis is antagonized by activation of \hat{l}_{-} -adrenergic-receptors in dendritic cells. Scientific Reports, 2020, 10, 8152.	3.3	8
225	MK2 degradation as a sensor of signal intensity that controls stress-induced cell fate. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	8
226	Simple preparative two-step purification of interleukin-2 from culture medium of lectin stimulated normal human lymphocytes. Journal of Immunological Methods, 1986, 87, 185-191.	1.4	7
227	Structural and functional homology between periplasmic bacterial molecular chaperones and small heat shock proteins. FEMS Immunology and Medical Microbiology, 1995, 11, 265-272.	2.7	7
228	Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss. Infection and Immunity, 2017, 85, .	2.2	7
229	The influence of Ca2+ on the lateral lipid distribution and phase transition in phosphatidylethanolamine/phosphatidylserine vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1984, 769, 511-513.	2.6	6
230	Characterization of a novel MK3 splice variant from murine ventricular myocardium. Cellular Signalling, 2010, 22, 1502-1512.	3.6	5
231	MK2â€Deficient Mice Are Bradycardic and Display Delayed Hypertrophic Remodeling in Response to a Chronic Increase in Afterload. Journal of the American Heart Association, 2021, 10, e017791.	3.7	5
232	ILâ€3 is essential for ICOSâ€L stabilization on mast cells, and sustains the ILâ€33â€induced RORγt ⁺ T _{reg} generation via enhanced ILâ€6 induction. Immunology, 2021, 163, 86-97.	4.4	5
233	Editorial: Emerging Functions of Septins. Frontiers in Cell and Developmental Biology, 2017, 5, 73.	3.7	4
234	Involvement of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) in endothelial dysfunction associated with pulmonary hypertension. Life Sciences, 2021, 286, 120075.	4.3	3

#	Article	IF	CITATIONS
235	Lyz2-Cre-Mediated Genetic Deletion of Septin7 Reveals a Role of Septins in Macrophage Cytokinesis and Kras-Driven Tumorigenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 795798.	3.7	3
236	ERK3â€MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. Journal of Cellular Physiology, 2022, 237, 2271-2287.	4.1	3
237	To die or not to die: Regulatory feedback phosphorylation circuits determine receptor-interacting protein kinase-1 (RIPK1) function. Molecular and Cellular Oncology, 2018, 5, e1396389.	0.7	2
238	A theoretical approach to cluster formation in biological membranes. BioSystems, 1984, 17, 135-154.	2.0	1
239	Protein Kinases as Substrates for SAPKs. , 2007, , 243-260.		1
240	The p38/MK2 Axis in Monocytes of Fibromyalgia Syndrome Patients: An Explorative Study. Medicina (Lithuania), 2021, 57, 396.	2.0	1
241	Small-Molecule Protein and Lipid Kinase Inhibitors in Inflammation and Specific Models for Their Evaluation. Methods in Molecular Biology, 2012, 795, 35-44.	0.9	1
242	Editorial: Emerging Functions of Septinsâ€"Volume II. Frontiers in Cell and Developmental Biology, 0, 10,	3.7	1
243	360 Cross-regulation of cytokine signalling: Pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. Cytokine, 2008, 43, 329.	3.2	0
244	Mice Deficient In MK2 Show Increased Susceptibility To Pseudomonas Aeruginosa Infection. , 2010, , .		0
245	Monopolar Spindle 1, Mps1., 2012, , 1114-1114.		O
246	T cell LFA-1-induced proinflammatory mRNA stabilization is mediated by the p38 pathway kinase MK2 in a process regulated by hnRNPs C, H1 and K. PLoS ONE, 2018, 13, e0201103.	2.5	0
247	Mapkap kinase 2. The AFCS-nature Molecule Pages, 0, , .	0.2	0
248	Mapkap kinase 3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
249	Mapkap kinase 5. The AFCS-nature Molecule Pages, 0, , .	0.2	О
250	Mapkap Kinase 2/3 (MK2/3). , 2016, , 1-6.		0
251	Mapkap Kinase 2/3 (MK2/3). , 2018, , 2958-2963.		0
252	Synergy between FLT3-ITD and p53 Haploinsufficiency or Loss in the Development of Acute Myeloid Leukemia. Blood, 2018, 132, 771-771.	1.4	0

#	Article	IF	CITATIONS
253	Transcriptional, Postâ€transcriptional, and Postâ€translational Regulation of MK5 in Cardiac Cells. FASEB Journal, 2020, 34, 1-1.	0.5	O
254	Cover Image, Volume 237, Number 4, April 2022. Journal of Cellular Physiology, 2022, 237, .	4.1	0