
Ana M Bajo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumorigenic transformation of human prostatic epithelial cell line RWPEâ€1 by growth hormoneâ€releasing hormone (GHRH). Prostate, 2022, 82, 933-941.	2.3	3
2	Stimulation of neuroendocrine differentiation in prostate cancer cells by GHRH and its blockade by GHRH and its blockade by GHRH antagonists. Investigational New Drugs, 2020, 38, 746-754.	2.6	10
3	Cyclopentadienyl ruthenium(II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer. European Journal of Medicinal Chemistry, 2020, 199, 112414.	5.5	14
4	Water soluble, optically active monofunctional Pd(ii) and Pt(ii) compounds: promising adhesive and antimigratory effects on human prostate PC-3 cancer cells. Dalton Transactions, 2019, 48, 14279-14293.	3.3	11
5	In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in advanced prostate cancer. European Polymer Journal, 2019, 113, 229-235.	5.4	17
6	Insight into the antitumor activity of carbosilane Cu(<scp>ii</scp>)–metallodendrimers through their interaction with biological membrane models. Nanoscale, 2019, 11, 13330-13342.	5.6	25
7	Biological evaluation of water soluble arene Ru(II) enantiomers with amino-oxime ligands. Journal of Inorganic Biochemistry, 2018, 183, 32-42.	3.5	12
8	Growth hormoneâ€releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer. Prostate, 2018, 78, 915-926.	2.3	10
9	Growth hormone-releasing hormone (GHRH) promotes metastatic phenotypes through EGFR/HER2 transactivation in prostate cancer cells. Molecular and Cellular Endocrinology, 2017, 446, 59-69.	3.2	16
10	Growth hormone-releasing hormone induced transactivation of epidermal growth factor receptor in human triple-negative breast cancer cells. Peptides, 2016, 86, 153-161.	2.4	6
11	Novel enantiopure cyclopentadienyl Ti(IV) oximato compounds as potential anticancer agents. Journal of Inorganic Biochemistry, 2016, 156, 22-34.	3.5	13
12	Anti-proliferative and pro-apoptotic effects of CHRH antagonists in prostate cancer. Oncotarget, 2016, 7, 52195-52206.	1.8	8
13	Hydrogen Bonding and Anticancer Properties of Waterâ€Soluble Chiral <i>p</i> â€Cymene Ru ^{II} Compounds with Aminoâ€Oxime Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 2295-2307.	2.0	31
14	VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cellular Signalling, 2015, 27, 236-244.	3.6	13
15	Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Investigational New Drugs, 2014, 32, 871-882.	2.6	15
16	Signalling pathways involved in antitumoral effects of VIP in human renal cell carcinoma A498 cells: VIP induction of p53 expression. International Journal of Biochemistry and Cell Biology, 2014, 53, 295-301.	2.8	5
17	Inhibitory effects of antagonists of growth hormoneâ€releasing hormone on growth and invasiveness of PC3 human prostate cancer. International Journal of Cancer, 2013, 132, 755-765.	5.1	18
18	Antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice. Cancer Letters, 2013, 336, 196-203.	7.2	12

Ανα Μ Βαιο

#	Article	IF	CITATIONS
19	Vasoactive intestinal peptide induces oxidative stress and suppresses metastatic potential in human clear cell renal cell carcinoma. Molecular and Cellular Endocrinology, 2013, 365, 212-222.	3.2	14
20	RNA interference-directed silencing of VPAC1 receptor inhibits VIP effects on both EGFR and HER2 transactivation and VEGF secretion in human breast cancer cells. Molecular and Cellular Endocrinology, 2012, 348, 241-246.	3.2	29
21	Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1676-1685.	4.1	24
22	Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells. Peptides, 2012, 38, 275-281.	2.4	16
23	Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance. Histology and Histopathology, 2012, 27, 1093-101.	0.7	18
24	Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (ANâ€215) and a bombesin antagonist (RCâ€3095). International Journal of Cancer, 2010, 127, 1813-1822.	5.1	17
25	Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1. Cancer Letters, 2010, 299, 11-21.	7.2	29
26	Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides, 2010, 31, 2035-2045.	2.4	51
27	Vasoactive intestinal peptide behaves as a proâ€metastatic factor in human prostate cancer cells. Prostate, 2009, 69, 774-786.	2.3	27
28	Multifunctional role of VIP in prostate cancer progression in a xenograft model: Suppression by curcumin and COX-2 inhibitor NS-398. Peptides, 2009, 30, 2357-2364.	2.4	21
29	Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Molecular and Cellular Endocrinology, 2009, 302, 41-48.	3.2	50
30	Vasoactive intestinal peptide (VIP) increases vascular endothelial growth factor (VEGF) expression and secretion in human breast cancer cells. Regulatory Peptides, 2007, 144, 101-108.	1.9	29
31	Vasoactive intestinal peptide enhances growth and angiogenesis of human experimental prostate cancer in a xenograft model. Peptides, 2007, 28, 1896-1901.	2.4	30
32	Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-κB in human prostate cell lines. Molecular and Cellular Endocrinology, 2007, 270, 8-16.	3.2	19
33	Transactivation of HER2 by vasoactive intestinal peptide in experimental prostate cancer: Antagonistic action of an analog of growth-hormone-releasing hormone. International Journal of Oncology, 2007, 31, 1223-30.	3.3	5
34	Solubilization of Adenylyl Cyclase from Human Myometrium in a αS-Coupled Form. Bioscience Reports, 2003, 23, 175-186.	2.4	0
35	Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1250-1255.	7.1	70
36	Targeted doxorubicin-containing luteinizing hormone-releasing hormone analogue AN-152 inhibits the growth of doxorubicin-resistant MX-1 human breast cancers. Clinical Cancer Research, 2003, 9, 3742-8.	7.0	40

Ana M Bajo

#	Article	IF	CITATIONS
37	Effects of long-term treatment with the luteinizing hormone-releasing hormone (LHRH) agonist Decapeptyl and the LHRH antagonist Cetrorelix on the levels of pituitary LHRH receptors and their mRNA expression in rats. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15048-15053.	7.1	36
38	Bombesin antagonists inhibit growth of MDA-MB-435 estrogen-independent breast cancers and decrease the expression of the ErbB-2/HER-2 oncoprotein and c-junand c-fosoncogenes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3836-3841.	7.1	45
39	Effective treatment of experimental ES-2 human ovarian cancers with a cytotoxic analog of luteinizing hormone-releasing hormone AN-207. Anti-Cancer Drugs, 2002, 13, 949-956.	1.4	22
40	Expression of vasoactive intestinal peptide (VIP) receptors in human uterus. Peptides, 2000, 21, 1383-1388.	2.4	23
41	Ontogeny of vasoactive intestinal peptide receptors in rat ventral prostate. General Pharmacology, 1994, 25, 509-514.	0.7	22