Daniel F Voytas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762362/publications.pdf Version: 2024-02-01

DANIEL E VOVTAS

#	Article	IF	CITATIONS
1	High-efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant Physiology, 2022, 189, 1241-1245.	2.3	22
2	Heritable base-editing in <i>Arabidopsis</i> using RNA viral vectors. Plant Physiology, 2022, 189, 1920-1924.	2.3	17
3	Fast-TrACC: A Rapid Method for Delivering and Testing Gene Editing Reagents in Somatic Plant Cells. Frontiers in Genome Editing, 2021, 2, .	2.7	4
4	Fine Mapping of Leaf Trichome Density Revealed a 747-kb Region on Chromosome 1 in Cold-Hardy Hybrid Wine Grape Populations. Frontiers in Plant Science, 2021, 12, 587640.	1.7	12
5	Attaining the promise of plant gene editing at scale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
6	VipariNama: RNA viral vectors to rapidly elucidate the relationship between gene expression and phenotype. Plant Physiology, 2021, 186, 2222-2238.	2.3	16
7	RNA Viral Vectors for Accelerating Plant Synthetic Biology. Frontiers in Plant Science, 2021, 12, 668580.	1.7	13
8	Plant genome engineering from lab to field—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 35-54.	1.8	4
9	Analyzing Plant Gene Targeting Outcomes and Conversion Tracts with Nanopore Sequencing. International Journal of Molecular Sciences, 2021, 22, 9723.	1.8	1
10	Plant gene editing through de novo induction of meristems. Nature Biotechnology, 2020, 38, 84-89.	9.4	329
11	Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in <i>Setaria viridis</i> . Plant Journal, 2020, 104, 828-838.	2.8	48
12	Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nature Plants, 2020, 6, 620-624.	4.7	198
13	Overcoming bottlenecks in plant gene editing. Current Opinion in Plant Biology, 2020, 54, 79-84.	3.5	71
14	Editing through infection. Nature Plants, 2020, 6, 738-739.	4.7	8
15	Building customizable auto-luminescent luciferase-based reporters in plants. ELife, 2020, 9, .	2.8	36
16	Modulating gene translational control through genome editing. National Science Review, 2019, 6, 391-391.	4.6	2
17	Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. Frontiers in Plant Science, 2019, 10, 110.	1.7	21
18	Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct, 2019, 3, e00181.	0.8	56

#	Article	IF	CITATIONS
19	Genome Editing in Potato with CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 183-201.	0.4	11
20	Agrobacterium rhizogenes-mediated transformation of a dioecious plant model Silene latifolia. New Biotechnology, 2019, 48, 20-28.	2.4	16
21	Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 2018, 8, 6502.	1.6	98
22	Novel alleles of rice <i>elF4G</i> generated by CRISPR/Cas9â€ŧargeted mutagenesis confer resistance to <i>Rice tungro spherical virus</i> . Plant Biotechnology Journal, 2018, 16, 1918-1927.	4.1	307
23	Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 2018, 11, 245-256.	3.9	179
24	<scp>CRISPR</scp> /Cas9 and <scp>TALEN</scp> s generate heritable mutations for genes involved in small <scp>RNA</scp> processing of <i>Glycine max</i> and <i>Medicago truncatula</i> . Plant Biotechnology Journal, 2018, 16, 1125-1137.	4.1	147
25	Lowâ€gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16, 902-910.	4.1	455
26	Allele exchange at the <scp>EPSPS</scp> locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal, 2018, 16, 1275-1282.	4.1	137
27	De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36, 1211-1216.	9.4	559
28	ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells. Journal of Genetics and Genomics, 2018, 45, 681-684.	1.7	21
29	Genome Editing for Crop Improvement – Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Frontiers in Plant Science, 2018, 9, 1607.	1.7	65
30	Synthetic genomes engineered by SCRaMbLEing. Science China Life Sciences, 2018, 61, 975-977.	2.3	9
31	Essential nucleotide- and protein-dependent functions of <i>Actb</i> /l²-actin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7973-7978.	3.3	27
32	Editing plant genes one base at a time. Nature Plants, 2018, 4, 412-413.	4.7	12
33	Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007337.	1.5	161
34	Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation. Plant Physiology, 2017, 173, 921-931.	2.3	71
35	Gene expression atlas for the food security crop cassava. New Phytologist, 2017, 213, 1632-1641.	3.5	93
36	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	4.7	425

#	Article	lF	CITATIONS
37	Downregulation of <i>Plzf</i> Gene Ameliorates Metabolic and Cardiac Traits in the Spontaneously Hypertensive Rat. Hypertension, 2017, 69, 1084-1091.	1.3	41
38	Genome Engineering and Agriculture: Opportunities and Challenges. Progress in Molecular Biology and Translational Science, 2017, 149, 1-26.	0.9	88
39	A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. Plant Cell, 2017, 29, 1196-1217.	3.1	469
40	Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 2017, 256, 120-130.	1.7	121
41	Highâ€efficiency gene targeting in hexaploid wheat using <scp>DNA</scp> replicons and <scp>CRISPR</scp> /Cas9. Plant Journal, 2017, 89, 1251-1262.	2.8	305
42	RNA targeting with CRISPR–Cas13. Nature, 2017, 550, 280-284.	13.7	1,442
43	Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology, 2017, 95, 111-121.	2.0	71
44	Targeting a Single Alternative Polyadenylation Site Coordinately Blocks Expression of Androgen Receptor mRNA Splice Variants in Prostate Cancer. Cancer Research, 2017, 77, 5228-5235.	0.4	52
45	Technology Turbocharges Functional Genomics. Plant Cell, 2017, 29, 1179-1180.	3.1	4
46	Targeted Mutagenesis in Plant Cells through Transformation of Sequence-Specific Nuclease mRNA. PLoS ONE, 2016, 11, e0154634.	1.1	20
47	Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Frontiers in Plant Science, 2016, 7, 1045.	1.7	252
48	MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants. G3: Genes, Genomes, Genetics, 2016, 6, 423-433.	0.8	23
49	Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration. Cell Systems, 2016, 3, 252-263.e8.	2.9	172
50	The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy, 2016, 12, 547-564.	4.3	243
51	Gene editing and its application for hematological diseases. International Journal of Hematology, 2016, 104, 18-28.	0.7	24
52	A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. Molecular Plant, 2016, 9, 1088-1091.	3.9	144
53	Multiplexed, targeted gene editing in <i>Nicotiana benthamiana</i> for glycoâ€engineering and monoclonal antibody production. Plant Biotechnology Journal, 2016, 14, 533-542.	4.1	95
54	Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34, 477-479.	9.4	34

#	Article	IF	CITATIONS
55	Editorial Prerogative and the Plant Genome. Journal of Genetics and Genomics, 2016, 43, 229-232.	1.7	2
56	Highly efficient gene tagging in the bryophyte <i>Physcomitrella patens</i> using the tobacco (<i>Nicotiana tabacum</i>) Tnt1 retrotransposon. New Phytologist, 2016, 212, 759-769.	3.5	17
57	Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biology, 2016, 16, 225.	1.6	160
58	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	3.1	429
59	Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 783, 9-14.	0.4	22
60	A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice. Plant Physiology, 2016, 170, 653-666.	2.3	47
61	Evaluation of TCR Gene Editing Achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Molecular Therapy, 2016, 24, 570-581.	3.7	168
62	Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal, 2016, 14, 169-176.	4.1	324
63	Targeting of the Plzf Gene in the Rat by Transcription Activator-Like Effector Nuclease Results in Caudal Regression Syndrome in Spontaneously Hypertensive Rats. PLoS ONE, 2016, 11, e0164206.	1.1	13
64	Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants, 2015, 1, .	4.7	327
65	Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System. PLoS ONE, 2015, 10, e0144591.	1.1	211
66	Engineered TAL Effector Proteins: Versatile Reagents for Manipulating Plant Genomes. , 2015, , 55-72.		2
67	Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Human Gene Therapy, 2015, 26, 114-126.	1.4	94
68	Non-transgenic Plant Genome Editing Using Purified Sequence-Specific Nucleases. Molecular Plant, 2015, 8, 1425-1427.	3.9	52
69	An RNA polymerase III subunit determines sites of retrotransposon integration. Science, 2015, 348, 585-588.	6.0	70
70	Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. Molecular Plant, 2015, 8, 1288-1291.	3.9	255
71	A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 2015, 169, 971-985.	2.3	532
72	High-frequency, precise modification of the tomato genome. Genome Biology, 2015, 16, 232.	3.8	521

#	Article	IF	CITATIONS
73	Enabling plant synthetic biology through genome engineering. Trends in Biotechnology, 2015, 33, 120-131.	4.9	203
74	Efficient Design and Assembly of Custom TALENs Using the Golden Gate Platform. Methods in Molecular Biology, 2015, 1239, 133-159.	0.4	38
75	Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges. PLoS Biology, 2014, 12, e1001877.	2.6	367
76	Targeted Mutagenesis of the Tomato <i>PROCERA</i> Gene Using Transcription Activator-Like Effector Nucleases Â. Plant Physiology, 2014, 166, 1288-1291.	2.3	133
77	DNA Replicons for Plant Genome Engineering Â. Plant Cell, 2014, 26, 151-163.	3.1	464
78	Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 2014, 12, 934-940.	4.1	433
79	Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nature Communications, 2014, 5, 3831.	5.8	351
80	Wheat rescued from fungal disease. Nature Biotechnology, 2014, 32, 886-887.	9.4	11
81	Mouse Genome Engineering Using Designer Nucleases. Journal of Visualized Experiments, 2014, , .	0.2	11
82	Tailor-Made Mutations in Arabidopsis Using Zinc Finger Nucleases. Methods in Molecular Biology, 2014, 1062, 193-209.	0.4	7
83	Reviewer acknowledgement 2013. Mobile DNA, 2013, 4, 4.	1.3	0
84	TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology, 2013, 83, 279-285.	2.0	171
85	TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends in Cell Biology, 2013, 23, 390-398.	3.6	120
86	Compact designer TALENs for efficient genome engineering. Nature Communications, 2013, 4, 1762.	5.8	83
87	Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Molecular Plant, 2013, 6, 1365-1368.	3.9	245
88	Increasing frequencies of site-specific mutagenesis and gene targeting in <i>Arabidopsis</i> by manipulating DNA repair pathways. Genome Research, 2013, 23, 547-554.	2.4	142
89	TALEN-based Gene Correction for Epidermolysis Bullosa. Molecular Therapy, 2013, 21, 1151-1159.	3.7	232
90	Plant Genome Engineering with Sequence-Specific Nucleases. Annual Review of Plant Biology, 2013, 64, 327-350.	8.6	444

6

#	Article	IF	CITATIONS
91	TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology, 2013, 31, 530-532.	9.4	119
92	Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila. G3: Genes, Genomes, Genetics, 2013, 3, 1717-1725.	0.8	61
93	Targeted Mutagenesis of <i>Arabidopsis thaliana</i> Using Engineered TAL Effector Nucleases. G3: Genes, Genomes, Genetics, 2013, 3, 1697-1705.	0.8	127
94	Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes. Methods in Molecular Biology, 2013, 1069, 25-42.	0.4	20
95	TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17492-17497.	3.3	147
96	Targeted Deletion and Inversion of Tandemly Arrayed Genes in <i>Arabidopsis thaliana</i> Using Zinc Finger Nucleases. G3: Genes, Genomes, Genetics, 2013, 3, 1707-1715.	0.8	72
97	TAL Effector Specificity for base 0 of the DNA Target Is AlteredÂin a Complex, Effector- and Assay-Dependent MannerÂby Substitutions forÂthe Tryptophan in Cryptic Repeat –1. PLoS ONE, 2013, 8, e82120.	1.1	37
98	A nucleosomal surface defines an integration hotspot for the <i>Saccharomyces cerevisiae</i> Ty1 retrotransposon. Genome Research, 2012, 22, 704-713.	2.4	61
99	Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays. Nucleic Acids Research, 2012, 41, D452-D455.	6.5	21
100	Genome Engineering of Crops with Designer Nucleases. Plant Genome, 2012, 5, 42-50.	1.6	102
101	Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17382-17387.	3.3	524
102	Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering Â. Plant Physiology, 2012, 161, 20-27.	2.3	407
103	In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491, 114-118.	13.7	849
104	TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Research, 2012, 40, W117-W122.	6.5	549
105	Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. PLoS Genetics, 2012, 8, e1002861.	1.5	422
106	Targeting G with TAL Effectors: A Comparison of Activities of TALENs Constructed with NN and NK Repeat Variable Di-Residues. PLoS ONE, 2012, 7, e45383.	1.1	100
107	Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases Â. Plant Physiology, 2011, 156, 466-473.	2.3	260
108	A TALE of Two Nucleases: Gene Targeting for the Masses?. Zebrafish, 2011, 8, 147-149.	0.5	61

#	Article	IF	CITATIONS
109	Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 2011, 39, e82-e82.	6.5	1,793
110	Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011, 8, 67-69.	9.0	480
111	TAL Effectors: Customizable Proteins for DNA Targeting. Science, 2011, 333, 1843-1846.	6.0	884
112	ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics, 2011, 12, 83.	1.2	45
113	Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20351-20356.	3.3	24
114	Targeted Mutagenesis in Arabidopsis Using Zinc-Finger Nucleases. Methods in Molecular Biology, 2011, 701, 167-177.	0.4	24
115	Hemivirus. , 2011, , 1549-1553.		0
116	Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinformatics, 2010, 11, 543.	1.2	21
117	Welcome to Mobile DNA. Mobile DNA, 2010, 1, 1.	1.3	15
118	Retrotransposon vectors for gene delivery in plants. Mobile DNA, 2010, 1, 19.	1.3	9
119	Meeting Report for Mobile DNA 2010. Mobile DNA, 2010, 1, 20.	1.3	0
120	Reply to "Genome editing with modularly assembled zinc-finger nucleases― Nature Methods, 2010, 7, 91-92.	9.0	71
121	High frequency targeted mutagenesis in <i>Arabidopsis thaliana</i> using zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12028-12033.	3.3	347
122	Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics, 2010, 186, 757-761.	1.2	1,618
123	ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Research, 2010, 38, W462-W468.	6.5	365
124	A Transient Assay for Monitoring Zinc Finger Nuclease Activity at Endogenous Plant Gene Targets. Methods in Molecular Biology, 2010, 649, 299-313.	0.4	7
125	Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Research, 2009, 37, D279-D283.	6.5	69
126	An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Nucleic Acids Research, 2009, 37, 506-515.	6.5	42

#	Article	IF	CITATIONS
127	High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459, 442-445.	13.7	682
128	Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nature Protocols, 2009, 4, 1471-1501.	5.5	187
129	DNA Binding Made Easy. Science, 2009, 326, 1491-1492.	6.0	31
130	Fighting fire with fire. Nature, 2008, 451, 412-413.	13.7	3
131	Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods, 2008, 5, 374-375.	9.0	385
132	Rapid "Open-Source―Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification. Molecular Cell, 2008, 31, 294-301.	4.5	660
133	Chromodomains direct integration of retrotransposons to heterochromatin. Genome Research, 2008, 18, 359-369.	2.4	178
134	Retrotransposon Target Site Selection by Imitation of a Cellular Protein. Molecular and Cellular Biology, 2008, 28, 1230-1239.	1.1	18
135	Targeting Integration of the Saccharomyces Ty5 Retrotransposon. Methods in Molecular Biology, 2008, 435, 153-163.	0.4	18
136	Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research, 2007, 35, W599-W605.	6.5	256
137	Phosphorylation Regulates Integration of the Yeast Ty5 Retrotransposon into Heterochromatin. Molecular Cell, 2007, 27, 289-299.	4.5	72
138	Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nature Protocols, 2006, 1, 1637-1652.	5.5	180
139	High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant Journal, 2005, 44, 693-705.	2.8	328
140	A eukaryotic gene family related to retroelement integrases. Trends in Genetics, 2005, 21, 133-137.	2.9	32
141	SplitTester: software to identify domains responsible for functional divergence in protein family. BMC Bioinformatics, 2005, 6, 137.	1.2	8
142	The Sireviruses, a Plant-Specific Lineage of the Ty1/copia Retrotransposons, Interact with a Family of Proteins Related to Dynein Light Chain 8. Plant Physiology, 2005, 139, 857-868.	2.3	35
143	Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biology, 2004, 5, R78.	13.9	70
144	The diversity of LTR retrotransposons. Genome Biology, 2004, 5, 225.	13.9	236

#	Article	IF	CITATIONS
145	CEN plasmid segregation is destabilized by tethered determinants of Ty 5 integration specificity: a role for double-strand breaks in CEN antagonism. Chromosoma, 2003, 112, 58-65.	1.0	4
146	The soybean retroelement SIRE 1 uses stop codon suppression to express its envelopeâ€like protein. EMBO Reports, 2003, 4, 274-277.	2.0	15
147	Translational recoding signals between gag and pol in diverse LTR retrotransposons. Rna, 2003, 9, 1422-1430.	1.6	80
148	Controlling integration specificity of a yeast retrotransposon. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5891-5895.	3.3	115
149	SIRE1, an Endogenous Retrovirus Family from Glycine max, Is Highly Homogeneous and Evolutionarily Young. Molecular Biology and Evolution, 2003, 20, 1222-1230.	3.5	42
150	Athila4 of Arabidopsis and Calypso of Soybean Define a Lineage of Endogenous Plant Retroviruses. Genome Research, 2002, 12, 122-131.	2.4	100
151	Ty5 gag Mutations Increase Retrotransposition and Suggest a Role for Hydrogen Bonding in the Function of the Nucleocapsid Zinc Finger. Journal of Virology, 2002, 76, 3240-3247.	1.5	6
152	Genes of the Pseudoviridae (Ty1/copia Retrotransposons). Molecular Biology and Evolution, 2002, 19, 1832-1845.	3.5	97
153	Detection and Quantitation of Radiolabeled Proteins and DNA in Gels and Blots. Current Protocols in Immunology, 2002, 50, Appendix 3J.	3.6	2
154	Common Physical Properties of DNA Affecting Target Site Selection of Sleeping Beauty and other Tc1/mariner Transposable Elements. Journal of Molecular Biology, 2002, 323, 441-452.	2.0	247
155	Agarose Gel Electrophoresis. , 2001, Chapter 2, Unit2.5A.		200
156	Detection and Quantitation of Radiolabeled Proteins in Gels and Blots. , 2001, Chapter 6, Unit 6.3.		2
157	Constructing Nested Deletions for Use in DNA Sequencing. , 2001, Chapter 7, Unit7.2.		3
158	Targeting of the Yeast Ty5 Retrotransposon to Silent Chromatin Is Mediated by Interactions between Integrase and Sir4p. Molecular and Cellular Biology, 2001, 21, 6606-6614.	1.1	143
159	Expression and Processing of Proteins Encoded by the Saccharomyces Retrotransposon Ty5. Journal of Virology, 2001, 75, 1790-1797.	1.5	22
160	Detection and Quantitation of Radiolabeled Proteins in Gels and Blots. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2001, 7, A.3D.1-10.	1.1	2
161	Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant Journal, 2000, 22, 303-313.	2.8	264
162	Retroviruses in plants?. Trends in Genetics, 2000, 16, 151-152.	2.9	93

#	Article	IF	CITATIONS
163	The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription. Rna, 1999, 5, 929-938.	1.6	28
164	The IMMUTANS Variegation Locus of Arabidopsis Defines a Mitochondrial Alternative Oxidase Homolog That Functions during Early Chloroplast Biogenesis. Plant Cell, 1999, 11, 43-55.	3.1	289
165	Detection and Quantitation of Radiolabeled Proteins and DNA in Gels and Blots. Current Protocols in Molecular Biology, 1999, 48, Appendix 3A.	2.9	14
166	The IMMUTANS Variegation Locus of Arabidopsis Defines a Mitochondrial Alternative Oxidase Homolog That Functions during Early Chloroplast Biogenesis. Plant Cell, 1999, 11, 43.	3.1	20
167	cDNA of the Yeast Retrotransposon Ty5 Preferentially Recombines with Substrates in Silent Chromatin. Molecular and Cellular Biology, 1999, 19, 484-494.	1.1	16
168	Rapid flux in plant genomes. Nature Genetics, 1998, 20, 6-6.	9.4	46
169	A Single Amino Acid Change in the Yeast Retrotransposon Ty5 Abolishes Targeting to Silent Chromatin. Molecular Cell, 1998, 1, 1051-1055.	4.5	55
170	Transposable Elements and Genome Organization: A Comprehensive Survey of Retrotransposons Revealed by the Complete <i>Saccharomyces cerevisiae</i> Genome Sequence. Genome Research, 1998, 8, 464-478.	2.4	512
171	Potential Retroviruses in Plants: Tat1 Is Related to a Group of Arabidopsis thaliana Ty3/gypsy Retrotransposons That Encode Envelope-Like Proteins. Genetics, 1998, 149, 703-715.	1.2	121
172	High Frequency cDNA Recombination of the Saccharomyces Retrotransposon Ty5: The LTR Mediates Formation of Tandem Elements. Genetics, 1997, 147, 545-556.	1.2	34
173	Multiple Non-LTR Retrotransposons in the Genome of <i>Arabidopsis thaliana</i> . Genetics, 1996, 142, 569-578.	1.2	82
174	Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant Journal, 1994, 6, 161-175.	2.8	177
175	Yeast retrotransposons and tRNAs. Trends in Genetics, 1993, 9, 421-427.	2.9	97
176	Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). Journal of Molecular Evolution, 1993, 36, 429-447.	0.8	104
177	Agarose Gel Electrophoresis. Current Protocols in Immunology, 1992, 2, Unit 10.4.	3.6	14
178	Yeast retrotransposon revealed. Nature, 1992, 358, 717-717.	13.7	82
179	A copia-like transposable element family in Arabidopsis thaliana. Nature, 1988, 336, 242-244.	13.7	217
180	Agarose Gel Electrophoresis. Current Protocols in Molecular Biology, 1988, 4, 2.5.1-2.5.9.	2.9	2

#	Article	IF	CITATIONS
181	Gibberellin-Induced Changes in the Populations of Translatable mRNAs and Accumulated Polypeptides in Dwarfs of Maize and Pea. Plant Physiology, 1987, 83, 15-23.	2.3	38