
Philip J Kranzusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4762173/publications.pdf Version: 2024-02-01

PHILID | KDANZUSCH

#	Article	IF	CITATIONS
1	Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011, 477, 340-343.	27.8	1,127
2	Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature, 2010, 467, 420-425.	27.8	445
3	Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nature Structural and Molecular Biology, 2014, 21, 528-534.	8.2	389
4	elF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature, 2015, 522, 111-114.	27.8	327
5	Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity. Cell Reports, 2013, 3, 1362-1368.	6.4	296
6	elF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature, 2016, 536, 96-99.	27.8	277
7	Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature, 2019, 567, 194-199.	27.8	275
8	STING cyclic dinucleotide sensing originated in bacteria. Nature, 2020, 586, 429-433.	27.8	246
9	Structure of the Human cGAS–DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell, 2018, 174, 300-311.e11.	28.9	244
10	Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′,3′ cGAMP Signaling. Molecular Cell, 2015, 59, 891-903.	9.7	224
11	A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell, 2017, 170, 1224-1233.e15.	28.9	211
12	Phosphoinositide Interactions Position cGAS at the Plasma Membrane to Ensure Efficient Distinction between Self- and Viral DNA. Cell, 2019, 176, 1432-1446.e11.	28.9	171
13	Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2015, 527, 535-538.	27.8	169
14	African origin of the malaria parasite Plasmodium vivax. Nature Communications, 2014, 5, 3346.	12.8	167
15	Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS–STING signalling. Nature, 2019, 566, 259-263.	27.8	164
16	Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell, 2021, 184, 5728-5739.e16.	28.9	156
17	Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity. Molecular Cell, 2020, 77, 723-733.e6.	9.7	148
18	Modular Architecture of the STING C-Terminal Tail Allows Interferon and NF-κB Signaling Adaptation. Cell Reports, 2019, 27, 1165-1175.e5.	6.4	139

Philip J Kranzusch

#	Article	IF	CITATIONS
19	CBASS Immunity Uses CARF-Related Effectors to Sense 3′–5′- and 2′–5′-Linked Cyclic Oligonucle Signals and Protect Bacteria from Phage Infection. Cell, 2020, 182, 38-49.e17.	otide 28.9	137
20	Bacterial gasdermins reveal an ancient mechanism of cell death. Science, 2022, 375, 221-225.	12.6	132
21	Infectious Lassa Virus, but Not Filoviruses, Is Restricted by BST-2/Tetherin. Journal of Virology, 2010, 84, 10569-10580.	3.4	125
22	A bacterial Argonaute with noncanonical guide RNA specificity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4057-4062.	7.1	122
23	Structure-Guided Reprogramming of Human cGAS Dinucleotide Linkage Specificity. Cell, 2014, 158, 1011-1021.	28.9	111
24	cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature, 2021, 597, 109-113.	27.8	104
25	cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81, 739-755.e7.	9.7	98
26	Molecular architecture of the vesicular stomatitis virus RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20075-20080.	7.1	91
27	Ribose 2′-O Methylation of the Vesicular Stomatitis Virus mRNA Cap Precedes and Facilitates Subsequent Guanine-N-7 Methylation by the Large Polymerase Protein. Journal of Virology, 2009, 83, 11043-11050.	3.4	88
28	Molecular Epidemiology of Simian Immunodeficiency Virus Infection in Wild-Living Gorillas. Journal of Virology, 2010, 84, 1464-1476.	3.4	78
29	Arenavirus Z protein controls viral RNA synthesis by locking a polymerase–promoter complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19743-19748.	7.1	77
30	Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature, 2022, 605, 522-526.	27.8	70
31	Assembly of a functional Machupo virus polymerase complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20069-20074.	7.1	64
32	Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase. Cell, 2017, 171, 85-102.e23.	28.9	64
33	cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Current Opinion in Structural Biology, 2019, 59, 178-187.	5.7	60
34	Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Molecular Cell, 2021, 81, 5039-5051.e5.	9.7	59
35	Conserved strategies for pathogen evasion of cGAS–STING immunity. Current Opinion in Immunology, 2020, 66, 27-34.	5.5	58
36	cGAS Conducts Micronuclei DNA Surveillance. Trends in Cell Biology, 2017, 27, 697-698.	7.9	48

Philip J Kranzusch

#	Article	IF	CITATIONS
37	A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). Journal of Allergy and Clinical Immunology, 2020, 146, 1204-1208.e6.	2.9	45
38	CBASS phage defense and evolution of antiviral nucleotide signaling. Current Opinion in Immunology, 2022, 74, 156-163.	5.5	43
39	Recurrent Loss-of-Function Mutations Reveal Costs to OAS1 Antiviral Activity in Primates. Cell Host and Microbe, 2019, 25, 336-343.e4.	11.0	37
40	Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host–pathogen conflict. ELife, 2020, 9, .	6.0	34
41	Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. Cell Reports, 2021, 35, 109206.	6.4	29
42	Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biology, 2012, 9, 941-948.	3.1	27
43	Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. ELife, 2019, 8, .	6.0	27
44	Varicellaâ€Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO Journal, 2022, 41, .	7.8	21
45	cGAS Dimerization Entangles DNA Recognition. Immunity, 2013, 39, 992-994.	14.3	16
46	CD-NTases and nucleotide second messenger signaling. Current Biology, 2020, 30, R1106-R1108.	3.9	7
47	Analysis of human cGAS activity and structure. Methods in Enzymology, 2019, 625, 13-40.	1.0	5
48	Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2016, 534, S13-S14.	27.8	1