List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761964/publications.pdf Version: 2024-02-01

LESUEL DOMIED

#	Article	IF	CITATIONS
1	Discovery of a Novel Member of the Carlavirus Genus from Soybean (Glycine max L. Merr.). Pathogens, 2021, 10, 223.	2.8	5
2	Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses, 2020, 12, 1376.	3.3	30
3	Evaluation of wild perennial Glycine species for resistance to soybean cyst nematode and soybean rust. Plant Breeding, 2020, 139, 923-931.	1.9	3
4	Aphis glycines virus 1, a new bicistronic virus with two functional internal ribosome entry sites, is related to a group of unclassified viruses in the Picornavirales. Journal of General Virology, 2020, 101, 105-111.	2.9	8
5	Genome-wide association study of the seed transmission rate of soybean mosaic virus and associated traits using two diverse population panels. Theoretical and Applied Genetics, 2019, 132, 3413-3424.	3.6	4
6	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
7	Length of poly(A) tail affects transcript infectivity of three ZYMV symptom variants differing at only five amino acid positions. Journal of Plant Pathology, 2019, 101, 1187-1193.	1.2	1
8	Characterization of Soybean <i>STAY-GREEN</i> Genes in Susceptibility to Foliar Chlorosis of Sudden Death Syndrome. Plant Physiology, 2019, 180, 711-717.	4.8	11
9	Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish. Archives of Virology, 2019, 164, 1683-1689.	2.1	4
10	A Turnip Mosaic Virus Determinant of Systemic Necrosis in <i>Nicotiana benthamiana</i> and a Novel Resistance-Breaking Determinant in Chinese Cabbage Identified from Chimeric Infectious Clones. Phytopathology, 2019, 109, 1638-1647.	2.2	5
11	A single nucleotide change in the overlapping MP and CP reading frames results in differences in symptoms caused by two isolates of Youcai mosaic virus. Archives of Virology, 2019, 164, 1553-1565.	2.1	4
12	Five Newly Collected Turnip Mosaic Virus (TuMV) Isolates from Jeju Island, Korea are Closely Related to Previously Reported Korean TuMV Isolates but Show Distinctive Symptom Development. Plant Pathology Journal, 2019, 35, 381-387.	1.7	7
13	Full-Length Infectious Clones of Two New Isolates of Tomato Mosaic Virus Induce Distinct Symptoms Associated with Two Differential Amino Acid Residues in 128-kDa Protein. Plant Pathology Journal, 2019, 35, 538-542.	1.7	1
14	Assembly and annotation of a draft genome sequence for Glycine latifolia , a perennial wild relative of soybean. Plant Journal, 2018, 95, 71-85.	5.7	33
15	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
16	Transcriptional and Small RNA Responses of the White Mold Fungus Sclerotinia sclerotiorum to Infection by a Virulence-Attenuating Hypovirus. Viruses, 2018, 10, 713.	3.3	35
17	A novel picornavirus-like genome from transcriptome sequencing of sugar beet cyst nematode represents a new putative genus. Journal of General Virology, 2018, 99, 1418-1424.	2.9	8
18	An Agent-Based Metapopulation Model Simulating Virus-Based Biocontrol of Heterodera Glycines. Journal of Nematology, 2018, 50, 79-90.	0.9	0

#	Article	IF	CITATIONS
19	New Korean isolates of Pepper mild mottle virus (PMMoV) differ in symptom severity and subcellular localization of the 126ÂkDa protein. Virus Genes, 2017, 53, 434-445.	1.6	13
20	Molecular characterization of a new soybean-infecting member of the genus Nepovirus identified by high-throughput sequencing. Archives of Virology, 2017, 162, 1089-1092.	2.1	8
21	Strain-specific association of soybean dwarf virus small subgenomic RNA with virus particles. Virus Research, 2017, 242, 100-105.	2.2	3
22	Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus. Plant Pathology Journal, 2017, 33, 393-401.	1.7	6
23	Assessment of Common Soybean-Infecting Viruses in Ohio, USA, Through Multi-site Sampling and High-Throughput Sequencing. Plant Health Progress, 2016, 17, 133-140.	1.4	6
24	Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. Phytopathology, 2016, 106, 1139-1151.	2.2	91
25	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
26	Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens. Journal of Virology, 2016, 90, 6846-6863.	3.4	252
27	Identification of Multiple Phytotoxins Produced by <i>Fusarium virguliforme</i> Including a Phytotoxic Effector (FvNIS1) Associated With Sudden Death Syndrome Foliar Symptoms. Molecular Plant-Microbe Interactions, 2016, 29, 96-108.	2.6	53
28	Reprint of "Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes― Virus Research, 2016, 219, 11-21.	2.2	13
29	Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Research, 2016, 213, 332-342.	2.2	136
30	Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics, 2016, 17, 153.	2.8	23
31	A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence. PLoS ONE, 2015, 10, e0145601.	2.5	41
32	Draft genome sequence of Phomopsis longicolla isolate MSPL 10-6. Genomics Data, 2015, 3, 55-56.	1.3	20
33	Transfection of Sclerotinia sclerotiorum with <i>In Vitro</i> Transcripts of a Naturally Occurring Interspecific Recombinant of Sclerotinia sclerotiorum Hypovirus 2 Significantly Reduces Virulence of the Fungus. Journal of Virology, 2015, 89, 5060-5071.	3.4	84
34	Detection and characterization of the first North American mastrevirus in switchgrass. Archives of Virology, 2015, 160, 1313-1317.	2.1	10
35	Comparative Mapping of the Wild Perennial Glycine latifolia and Soybean (G. max) Reveals Extensive Chromosome Rearrangements in the Genus Glycine. PLoS ONE, 2014, 9, e99427.	2.5	15
36	Identification of novel double-stranded RNA mycoviruses of Fusarium virguliforme and evidence of their effects on virulence. Archives of Virology, 2014, 159, 349-352.	2.1	29

#	Article	IF	CITATIONS
37	A novel flavivirus in the soybean cyst nematode. Journal of General Virology, 2014, 95, 1272-1280.	2.9	46
38	Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Archives of Virology, 2014, 159, 1373-1383.	2.1	14
39	Role of <i>Soybean mosaic virus</i> –Encoded Proteins in Seed and Aphid Transmission in Soybean. Phytopathology, 2013, 103, 941-948.	2.2	31
40	Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence. Theoretical and Applied Genetics, 2013, 126, 1627-1638.	3.6	8
41	Nyamiviridae: Proposal for a new family in the order Mononegavirales. Archives of Virology, 2013, 158, 2209-2226.	2.1	29
42	Seed Transmission Rates of Bean pod mottle virus and Soybean mosaic virus in Soybean May Be Affected by Mixed Infection or Expression of the Kunitz Trypsin Inhibitor. Research in Plant Disease, 2013, 19, 114-117.	0.8	4
43	Complete Genome Sequence of a Novel Pararetrovirus Isolated from Soybean. Journal of Virology, 2012, 86, 9555-9555.	3.4	9
44	Label-free virus detection using silicon photonic microring resonators. Biosensors and Bioelectronics, 2012, 31, 388-392.	10.1	88
45	Characterization of the in vitro Activities of the P1 and Helper Component Proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus. Plant Pathology Journal, 2012, 28, 197-201.	1.7	0
46	Arabidopsis TTR1 Causes LRR-Dependent Lethal Systemic Necrosis, rather than Systemic Acquired Resistance, to Tobacco Ringspot Virus. Molecules and Cells, 2011, 32, 421-430.	2.6	17
47	Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. Journal of General Virology, 2011, 92, 1870-1879.	2.9	64
48	Multiple Loci Condition Seed Transmission of <i>Soybean mosaic virus</i> (SMV) and SMV-Induced Seed Coat Mottling in Soybean. Phytopathology, 2011, 101, 750-756.	2.2	42
49	Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs. Plant Pathology Journal, 2011, 27, 315-323.	1.7	14
50	Application of sequence-independent amplification (SIA) for the identification of RNA viruses in bioenergy crops. Journal of Virological Methods, 2010, 169, 119-128.	2.1	21
51	Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology, 2010, 402, 149-163.	2.4	44
52	Occurrences of Soybean Viruses, Fungal Diseases, and Pests in Illinois Soybean Rust Sentinel Plots. Plant Health Progress, 2010, 11, .	1.4	17
53	Pathogenicity of Alternanthera mosaic virus is affected by determinants in RNA-dependent RNA polymerase and by reduced efficacy of silencing suppression in a movement-competent TGB1. Journal of General Virology, 2010, 91, 277-287.	2.9	38
54	Nucleotide sequence and genomic organization of a newly identified member of the genus Carmovirus, soybean yellow mottle mosaic virus, from soybean. Archives of Virology, 2009, 154, 1679-1684.	2.1	30

#	Article	IF	CITATIONS
55	Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines. Journal of Nematology, 2009, 41, 281-90.	0.9	21
56	Analysis of a Horizontally Transferred Pathway Involved in Vitamin B6 Biosynthesis from the Soybean Cyst Nematode Heterodera glycines. Molecular Biology and Evolution, 2008, 25, 2085-2098.	8.9	42
57	Similarities in Seed and Aphid Transmission Among Soybean mosaic virus Isolates. Plant Disease, 2007, 91, 546-550.	1.4	46
58	Soybean mosaic virus Helper Component-Protease Alters Leaf Morphology and Reduces Seed Production in Transgenic Soybean Plants. Phytopathology, 2007, 97, 366-372.	2.2	21
59	Selection of Heterodera glycines Chorismate Mutase-1 Alleles on Nematode-Resistant Soybean. Molecular Plant-Microbe Interactions, 2005, 18, 593-601.	2.6	37
60	Soybean mosaic virus helper component-protease enhances somatic embryo production andÂstabilizes transgene expression inÂsoybean. Plant Physiology and Biochemistry, 2005, 43, 1014-1021.	5.8	24
61	SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Triticum aestivum. Euphytica, 2005, 141, 33-40.	1.2	22
62	Incidence of Soybean dwarf virus and Identification of Potential Vectors in Illinois. Plant Disease, 2005, 89, 28-32.	1.4	20
63	Emended description of Pasteuria nishizawae. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1681-1685.	1.7	30
64	In vivo activity of Rhopalosiphum padi virus internal ribosome entry sites. Journal of General Virology, 2003, 84, 415-419.	2.9	33
65	WRKY Transcription Factor Family in Plant Defense Mechanism. Plant Pathology Journal, 2003, 19, 9-12.	1.7	1
66	Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2002, 40, 727-733.	5.8	39
67	Nucleotide sequence shows that Bean leafroll virus has a Luteovirus-like genome organization. Journal of General Virology, 2002, 83, 1791-1798.	2.9	49
68	Development and Characterization of Microsatellite and RFLP-Derived PCR Markers in Oat. Crop Science, 2002, 42, 912.	1.8	33
69	Molecular and Biological Characterization of a Trackable Illinois Isolate of Barley yellow dwarf virus-PAV. Plant Disease, 2000, 84, 483-486.	1.4	8
70	Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Research, 2000, 9, 127-135.	2.4	137
71	Production ofBarley yellow dwarf virusantisera by DNA immunization. Canadian Journal of Plant Pathology, 2000, 22, 410-415.	1.4	3
72	Amplified Fragment Length Polymorphism Markers Linked to a Major Quantitative Trait Locus Controlling Scab Resistance in Wheat. Phytopathology, 1999, 89, 343-348.	2.2	274

#	Article	IF	CITATIONS
73	Nucleotide Sequence Analysis Shows thatRhopalosiphum padiVirus Is a Member of a Novel Group of Insect-Infecting RNA Viruses. Virology, 1998, 243, 54-65.	2.4	88
74	In Situ Localization of Barley Yellow Dwarf Virus-PAV 17-kDa Protein and Nucleic Acids in Oats. Phytopathology, 1998, 88, 1031-1039.	2.2	30
75	Identification of Quantitative Loci for Tolerance to Barley Yellow Dwarf Virus in Oat. Phytopathology, 1998, 88, 410-415.	2.2	57
76	Comparison of Techniques for Detection of Barley Yellow Dwarf Virus-PAV-IL. Plant Disease, 1997, 81, 1236-1240.	1.4	19
77	Use of random amplified polymorphic DNA (RAPD) for identification of Gaeumannomyces species. Soil Biology and Biochemistry, 1996, 28, 703-710.	8.8	28
78	Ultrasonic purification of two Illinois isolates of barley yellow dwarf viruses. Canadian Journal of Plant Pathology, 1996, 18, 424-428.	1.4	0
79	Coat Protein Sequences of RMV-Like Strains of Barley Yellow Dwarf Virus Separate Them from Other Luteoviruses. Intervirology, 1994, 37, 2-5.	2.8	12
80	A rapid chemiluminescent detection method for barley yellow dwarf virus. Journal of Virological Methods, 1992, 39, 291-298.	2.1	19
81	AGROBACTER1UM-MED1ATED TRANSFORMATION OF APPLE. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 661e-661.	1.0	0
82	Drosophila virilis histone gene clusters lacking H1 coding segments. Journal of Molecular Evolution, 1986, 23, 149-158.	1.8	28