
## Marino Petrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4761182/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sustainable and fast synthesis of functionalized quinoxalines promoted by natural deep eutectic solvents (NADESs). Green Chemistry, 2022, 24, 3629-3633.                                                                                                  | 9.0  | 11        |
| 2  | Synthesis of Nitro Alcohols by Riboflavin Promoted Tandem Nefâ€Henry Reactions on Nitroalkanes.<br>Advanced Synthesis and Catalysis, 2021, 363, 742-746.                                                                                                  | 4.3  | 5         |
| 3  | Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Openâ€Chain<br><i>N</i> â€Activated Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 3655-3692.                                                                      | 4.3  | 13        |
| 4  | A New and Effective Oneâ€Pot Synthesis of Polysubstituted Carbazoles Starting from<br>βâ€Nitroâ€Î²,γâ€Unsaturatedâ€Ketones and Indoles. Asian Journal of Organic Chemistry, 2021, 10, 2334-2337.                                                          | 2.7  | 3         |
| 5  | New Perspectives in the Indole Ring Functionalization using 2â€Indolylmethanols. Advanced Synthesis and Catalysis, 2020, 362, 1214-1232.                                                                                                                  | 4.3  | 49        |
| 6  | 3-Alkylated indoles by reduction of sulfonyl indoles under flow chemical conditions. Arkivoc, 2020, 2019, 69-79.                                                                                                                                          | 0.5  | 4         |
| 7  | Synthesis and practical applications of 2-(2-nitroalkyl)pyrroles. Organic and Biomolecular Chemistry, 2020, 18, 4533-4546.                                                                                                                                | 2.8  | 13        |
| 8  | Synthesis of Unsymmetrical Bisindolylmethanes by Reaction of Indolylmagnesium Bromides with<br>Sulfonyl Indoles. Advanced Synthesis and Catalysis, 2020, 362, 1509-1513.                                                                                  | 4.3  | 5         |
| 9  | Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Organic<br>Chemistry Frontiers, 2019, 6, 2142-2182.                                                                                                           | 4.5  | 36        |
| 10 | Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Natural Product Reports, 2019, 36, 490-530.                                                                                                      | 10.3 | 41        |
| 11 | Recent Advances in the Synthesis of Unsymmetrical Bisindolylmethane Derivatives. Synthesis, 2019, 51, 829-841.                                                                                                                                            | 2.3  | 35        |
| 12 | γâ€Regioselective Functionalization of 3â€Alkenylindoles <i>via</i> 1,6â€Addition to Extended<br>Alkylideneindolenine Intermediates. Advanced Synthesis and Catalysis, 2018, 360, 1296-1302.                                                              | 4.3  | 10        |
| 13 | Oxidative Conversion of Sulfonyl Indoles into 3-Alkylidene-2-oxindoles under Flow Chemical<br>Conditions. Synthesis, 2018, 50, 371-376.                                                                                                                   | 2.3  | 6         |
| 14 | Synthetic Approach to the Preparation of (2-Acetoxy)allyl Nitro Compounds. Journal of Organic<br>Chemistry, 2018, 83, 12855-12862.                                                                                                                        | 3.2  | 1         |
| 15 | Novel antitumor copper( <scp>ii</scp> ) complexes designed to act through synergistic mechanisms of<br>action, due to the presence of an NMDA receptor ligand and copper in the same chemical entity. New<br>Journal of Chemistry, 2018, 42, 11878-11887. | 2.8  | 16        |
| 16 | Regioselective Direct Câ€Alkenylation of Indoles. Chemistry - A European Journal, 2017, 23, 16115-16151.                                                                                                                                                  | 3.3  | 88        |
| 17 | Frontispiece: Regioselective Direct Câ€Alkenylation of Indoles. Chemistry - A European Journal, 2017, 23, .                                                                                                                                               | 3.3  | 1         |
| 18 | Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives. Chemical Record, 2016, 16,                                                                                                                                                        | 5.8  | 27        |

1353-1379.

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent Developments in the Stereoselective Synthesis of Nitrogenâ€Containing Heterocycles using<br><i>N</i> â€Acylimines as Reactive Substrates. Advanced Synthesis and Catalysis, 2016, 358, 3657-3682.                                        | 4.3  | 62        |
| 20 | The Nitro to Carbonyl Conversion (Nef Reaction): New Perspectives for a Classical Transformation.<br>Advanced Synthesis and Catalysis, 2015, 357, 2371-2402.                                                                                    | 4.3  | 111       |
| 21 | Reaction of α-amido sulfones with functionalized nitrocompounds: a new two-step synthesis of N-alkoxycarbonyl-2,5-disubstituted pyrroles. RSC Advances, 2014, 4, 43258-43261.                                                                   | 3.6  | 6         |
| 22 | αâ€Acryloylamidoalkyl Sulfones in a Synthetic Approach for the Preparation of<br>6â€Alkyltetrahydropyridinâ€2â€ones. European Journal of Organic Chemistry, 2014, 2014, 5433-5441.                                                              | 2.4  | 5         |
| 23 | Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related<br>Bioactive Compounds. Chemical Reviews, 2014, 114, 7108-7149.                                                                                | 47.7 | 284       |
| 24 | Synthesis of 3â€(2â€Nitroalkyl)pyrroles from Sulfonylpyrroles and their Conversion to 6â€Azaindole<br>Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 3285-3289.                                                                      | 4.3  | 12        |
| 25 | A Photochemical Route to Benzo[ <i>a</i> ]carbazoles <i>via</i> Domino<br>Elimination/Electrocyclization of 2â€Arylâ€3â€(1â€ŧosylalkyl)indoles. Advanced Synthesis and Catalysis, 2013,<br>355, 643-646.                                        | 4.3  | 30        |
| 26 | Synthesis and Functionalization of Unsymmetrical Arylsulfonyl Bisindoles and Bisbenzazoles.<br>Advanced Synthesis and Catalysis, 2012, 354, 3539-3544.                                                                                          | 4.3  | 24        |
| 27 | Ketosulfonyl indoles in the regiodefined synthesis of tryptophols and related indole derivatives.<br>Organic and Biomolecular Chemistry, 2012, 10, 3486.                                                                                        | 2.8  | 18        |
| 28 | Solventâ€Free Nonâ€Covalent Organocatalysis: Enantioselective Addition of Nitroalkanes to<br>Alkylideneindolenines as a Flexible Gateway to Optically Active Tryptamine Derivatives. Advanced<br>Synthesis and Catalysis, 2012, 354, 1373-1380. | 4.3  | 43        |
| 29 | Arylsulfonyl Group: Activating Properties and Recent Synthetic Applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1032-1045.                                                                                     | 1.6  | 19        |
| 30 | Regioselective Synthesis of 3‣ubstituted Pyrroles by Nucleophilic Addition of 3â€(1â€Arylsulfonylalkyl)<br>Pyrroles Activated under Basic or Acid Conditions. Chemistry - A European Journal, 2011, 17, 7183-7187.                              | 3.3  | 20        |
| 31 | Nitroalkanes as Key Compounds for the Synthesis of Amino Derivatives. Current Organic Chemistry, 2011, 15, 1482-1506.                                                                                                                           | 1.6  | 35        |
| 32 | Metalâ€Free Synthesis of Imido Derivatives by Direct Oxidation of αâ€Amido Sulfones. European Journal of<br>Organic Chemistry, 2010, 2010, 5085-5089.                                                                                           | 2.4  | 9         |
| 33 | A Twoâ€Step Synthesis of Unsymmetrical 1,4â€Disubstituted Carbazoles from Sulfonylindoles Under<br>Heterogeneous Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 2459-2462.                                                             | 4.3  | 29        |
| 34 | Reaction of carbon nucleophiles with alkylideneindazolium and alkylideneindolium ions generated<br>from their 3-(1-arylsulfonylalkyl) indazole and indole precursors. Organic and Biomolecular<br>Chemistry, 2010, 8, 706-712.                  | 2.8  | 24        |
| 35 | Synthesis of 3-substituted indoles via reactive alkylideneindolenine intermediates. Organic and<br>Biomolecular Chemistry, 2010, 8, 1259-1270.                                                                                                  | 2.8  | 178       |
| 36 | A green procedure for the regio- and chemoselective hydrophosphonylation of unsaturated systems using CaO under solventless conditions. Green Chemistry, 2010, 12, 1171.                                                                        | 9.0  | 33        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A â€~Click' Approach to the Synthesis of 3-[2-(1-Alkyltriazol-4-yl)ethyl]indoles. Synthesis, 2009, 2009, 3143-3149.                                                                                                               | 2.3  | 15        |
| 38 | Synthesis of 3â€(Tosylalkyl)indazoles and their Desulfonylation Reactions – A New Entry to<br>3‣ubstituted Indazoles by an Unprecedented Friedel–Crafts Process. European Journal of Organic<br>Chemistry, 2009, 2009, 3184-3188. | 2.4  | 18        |
| 39 | Synthesis of indolylalkylphosphonates and 3-(1-diphenylphosphinoalkyl) indoles by reaction of<br>3-(1-arylsulfonylalkyl) indoles with phosphorus derivatives. Tetrahedron Letters, 2008, 49, 5645-5648.                           | 1.4  | 18        |
| 40 | Prolineâ€Catalyzed Asymmetric Formal αâ€Alkylation of Aldehydes via Vinylogous Iminium Ion Intermediates<br>Generated from Arylsulfonyl Indoles. Angewandte Chemie - International Edition, 2008, 47, 8707-8710.                  | 13.8 | 187       |
| 41 | Reaction of 3â€(1â€Arylsulfonylalkyl)â€indoles with Easily Enolisable Derivatives Promoted by Potassium<br>Fluoride on Basic Alumina. Advanced Synthesis and Catalysis, 2008, 350, 129-134.                                       | 4.3  | 59        |
| 42 | Improved preparation of alkyl 2-(3-indolyl)-3-nitroalkanoates under fully heterogeneous conditions:<br>stereoselective synthesis of alkyl (E)-2-(3-indolyl)-2-alkenoates. Tetrahedron, 2008, 64, 5435-5441.                       | 1.9  | 24        |
| 43 | Double Functionalization of <i>N</i> -Boc-3-(Tosylmethyl)indole Exploiting the ÂActivating Properties of the Tosyl Group. Synlett, 2008, 2008, 1845-1851.                                                                         | 1.8  | 6         |
| 44 | Nitroalkanes as Central Reagents in the Synthesis of Spiroketals. Molecules, 2008, 13, 319-330.                                                                                                                                   | 3.8  | 34        |
| 45 | Nitroalkanes as key building blocks for the synthesis of heterocyclic derivatives. Arkivoc, 2008, 2009, 195-223.                                                                                                                  | 0.5  | 15        |
| 46 | Recent Advances in Stereoselective Syntheses Using N-Acylimines. Synthesis, 2007, 2007, 159-186.                                                                                                                                  | 2.3  | 100       |
| 47 | An Efficient Diastereoselective Route to Differentially Protectedanti-4-Amino-1-alken-3-ols. Journal of<br>Organic Chemistry, 2007, 72, 1834-1837.                                                                                | 3.2  | 15        |
| 48 | Simplified Synthesis of 3-(1-Arylsulfonylalkyl) Indoles and Their Reaction with Reformatsky Reagents.<br>Journal of Organic Chemistry, 2007, 72, 1863-1866.                                                                       | 3.2  | 61        |
| 49 | Synthesis of 3-(2-nitroalkyl) indoles by reaction of 3-(1-arylsulfonylalkyl) indoles with nitroalkanes.<br>Tetrahedron Letters, 2007, 48, 5653-5656.                                                                              | 1.4  | 20        |
| 50 | Stereoselective synthesis of vicinal aminodiols, diamines and diaminols by the use of enantiopure<br>aldehydes in the three-component aromatic Mannich-type reaction. Tetrahedron: Asymmetry, 2007, 18,<br>1022-1029.             | 1.8  | 19        |
| 51 | Solventless Clay-Promoted Friedelâ^'Crafts Reaction of Indoles with α-Amido Sulfones:  Unexpected<br>Synthesis of 3-(1-Arylsulfonylalkyl) Indoles. Organic Letters, 2006, 8, 4093-4096.                                           | 4.6  | 100       |
| 52 | α-Amido sulfones from natural α-amino acids and their reaction with carbon nucleophiles. Tetrahedron,<br>2006, 62, 960-967.                                                                                                       | 1.9  | 11        |
| 53 | Aza-Henry reaction of substituted nitroalkanes using α-formamidoaryl sulfones as N-acylimino equivalents. Tetrahedron Letters, 2006, 47, 3501-3503.                                                                               | 1.4  | 19        |
| 54 | Conjugate Addition of Indoles to Nitroalkenes Promoted by Basic Alumina in Solventless Conditions.<br>Advanced Synthesis and Catalysis, 2006, 348, 191-196.                                                                       | 4.3  | 54        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Nitrocompounds as useful reagents for the synthesis of dicarbonyl derivatives. Arkivoc, 2006, 2006, 127-152.                                                                                           | 0.5  | 12        |
| 56 | TiCl4-promoted addition of nucleophiles to open chain α-amidoalkylphenyl sulfones. Tetrahedron<br>Letters, 2005, 46, 5999-6003.                                                                        | 1.4  | 30        |
| 57 | Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes:  Recent Results. Chemical Reviews,<br>2005, 105, 933-972.                                                                                | 47.7 | 465       |
| 58 | Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. ChemInform, 2005, 36, no.                                                                                                | 0.0  | 1         |
| 59 | TiCl4-Promoted Addition of Nucleophiles to Open Chain α-Amidoalkylphenyl Sulfones ChemInform,<br>2005, 36, no.                                                                                         | 0.0  | Ο         |
| 60 | α-Amido Sulfones as Stable Precursors of Reactive N-Acylimino Derivatives. Chemical Reviews, 2005, 105,<br>3949-3977.                                                                                  | 47.7 | 221       |
| 61 | Michael Addition of Nitroalkanes to Optically Active Acrylates Mediated by Cetyltrimethylammonium<br>Hydroxide (CTAOH). Letters in Organic Chemistry, 2004, 1, 335-339.                                | 0.5  | 4         |
| 62 | Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction). Tetrahedron, 2004,<br>60, 1017-1047.                                                                                 | 1.9  | 416       |
| 63 | Highly Diastereoselective Addition of Nitromethane Anion to Chiral α-Amidoalkylphenyl Sulfones.<br>Synthesis of Optically Active α-Amino Acid Derivatives ChemInform, 2004, 35, no.                    | 0.0  | Ο         |
| 64 | Recent Synthetic Developments in the Nitro to Carbonyl Conversion (Nef Reaction). ChemInform, 2004, 35, no.                                                                                            | 0.0  | 0         |
| 65 | Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3×7H2O—Nal System as a<br>Lewis Acid ChemInform, 2004, 35, no.                                                            | 0.0  | Ο         |
| 66 | Synthesis of advanced intermediates for the preparation of aza-analogues of podophyllotoxin.<br>Tetrahedron Letters, 2004, 45, 2133-2136.                                                              | 1.4  | 29        |
| 67 | Investigation into the Allylation Reactions of Aldehydes Promoted by the CeCl3·7H2Oâ^'Nal System as a<br>Lewis Acid. Journal of Organic Chemistry, 2004, 69, 1290-1297.                                | 3.2  | 45        |
| 68 | Reactivity of Chiral α-Amidoalkylphenyl Sulfones with Stabilized Carbanions. Stereoselective Synthesis<br>of Optically Active 1-Aminopyrrolizidine. Journal of Organic Chemistry, 2004, 69, 7303-7308. | 3.2  | 37        |
| 69 | Reactivity of Chiral Exocyclic N-Acyliminium Ions with Aromatic Derivatives ChemInform, 2003, 34, no.                                                                                                  | 0.0  | Ο         |
| 70 | Conjugate Addition of Nitroalkanes to N-Substituted Maleimides. Synthesis of 3-Alkylsuccinimides and<br>Pyrrolidines ChemInform, 2003, 34, no.                                                         | 0.0  | 0         |
| 71 | Conjugate Addition of Nitroalkanes to Dimethyl Maleate. Regioselective Formation of Both<br>Monoesters of 2-Alkylsuccinic Acids ChemInform, 2003, 34, no.                                              | 0.0  | 0         |
| 72 | Conjugate addition of nitroalkanes to N-substituted maleimides. Synthesis of 3-alkylsuccinimides and pyrrolidines. Tetrahedron, 2003, 59, 3603-3608.                                                   | 1.9  | 50        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Conjugate addition of nitroalkanes to dimethyl maleate. Regioselective formation of both monoesters of 2-alkylsuccinic acids. Tetrahedron, 2003, 59, 7283-7289.                                                         | 1.9 | 13        |
| 74 | Reactivity of chiral exocyclic N-acyliminium ions with aromatic derivatives. Tetrahedron: Asymmetry, 2003, 14, 1171-1178.                                                                                               | 1.8 | 24        |
| 75 | Highly diastereoselective addition of nitromethane anion to chiral α-amidoalkylphenyl sulfones.<br>Synthesis of optically active α-amino acid derivatives. Organic and Biomolecular Chemistry, 2003, 1,<br>4275-4281.   | 2.8 | 82        |
| 76 | Reaction of Allylzinc Reagents and Zinc Enolates of Ketones with α-Amidoalkylphenyl Sulfones. Journal of Organic Chemistry, 2002, 67, 4530-4535.                                                                        | 3.2 | 44        |
| 77 | Allylation of ExocyclicN-Acyliminium Ions Generated from<br>ChiralN-[1-(Phenylsulfonyl)alkyl]oxazolidin-2-onesâ€. Journal of Organic Chemistry, 2002, 67, 2989-2994.                                                    | 3.2 | 25        |
| 78 | Unprecedented, selective Nef reaction of secondary nitroalkanes promoted by DBU under basic homogeneous conditions. Tetrahedron Letters, 2002, 43, 5233-5235.                                                           | 1.4 | 55        |
| 79 | Reaction of α-Amidoalkylphenyl Sulfones with Lithiated Nitriles:ÂSyn-Selective Synthesis of β-Amino<br>Nitriles. Journal of Organic Chemistry, 2001, 66, 8264-8267.                                                     | 3.2 | 20        |
| 80 | Stereoselective Synthesis of (E)-4-Alkylidenecyclopent-2-en-1-ones by a Tandem Ring Closureâ                                                                                                                            | 4.6 | 40        |
| 81 | Synthesis of functionalized nitrocyclohexene derivatives from 2-nitrocycloalkanones, via anionic domino reactions. Tetrahedron, 2001, 57, 6079-6081.                                                                    | 1.9 | 7         |
| 82 | Claisen-Johnson Orthoester Rearrangement of γ-Hydroxy α,β-Unsaturated Ketones and Nitriles. European<br>Journal of Organic Chemistry, 2001, 2001, 713-718.                                                              | 2.4 | 15        |
| 83 | Conjugate Addition of Amines to α,β-Enones Promoted by CeCl3·7H2Oâ^'Nal System Supported in Silica Gel.<br>Journal of Organic Chemistry, 2001, 66, 9052-9055.                                                           | 3.2 | 166       |
| 84 | Synthesis of (E)-3-Alkylidenepyrrolidines by Nucleophilic Ring Closure of (E)-2-Alkylidene-1,4-diol<br>Derivatives. European Journal of Organic Chemistry, 2000, 2000, 2927-2931.                                       | 2.4 | 14        |
| 85 | Reaction of α-amidoalkylphenyl sulfones with Reformatsky reagents. A new entry to β-amino esters.<br>Tetrahedron Letters, 2000, 41, 2709-2712.                                                                          | 1.4 | 29        |
| 86 | 2,5-Dialkylfurans and Nitroalkanes as Source of 2,3,5-Trialkylpyrroles. Synlett, 2000, 2000, 391-393.                                                                                                                   | 1.8 | 6         |
| 87 | A Novel Route to the Vinyl Sulfide Nine-Membered Macrocycle Moiety of Griseoviridinâ€. Journal of<br>Organic Chemistry, 2000, 65, 4553-4559.                                                                            | 3.2 | 98        |
| 88 | Acyclic Stereoselection in the Reaction of Nucleophilic Reagents with ChiralN-Acyliminium Ions<br>Generated fromN-[1-(Phenylsulfonyl)alkyl]imidazolidin-2-onesâ€. Journal of Organic Chemistry, 2000,<br>65, 8277-8282. | 3.2 | 26        |
| 89 | An Efficient Procedure for the Diastereoselective Dehydration of β-Hydroxy Carbonyl Compounds by<br>CeCl3·7H2O/Nal System. Organic Letters, 2000, 2, 1791-1793.                                                         | 4.6 | 28        |
| 90 | Base assisted substitution of α-amidoalkyl sulfones by nitromethane anion. A new entry to<br>functionalized α-amino acids. Tetrahedron Letters, 1999, 40, 4449-4452.                                                    | 1.4 | 37        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synthesis of Allylic and Propargylic Primary Amines by Reaction of Organometallic Reagents with<br>α-Amidoalkyl Sulfones. Journal of Organic Chemistry, 1999, 64, 8970-8972.                                                                | 3.2 | 101       |
| 92  | Claisen rearrangement of γ-hydroxyvinyl sulfones via ketene acetal derivatives. A new entry to functionalized (2E,4E)-alkadienoic esters. Tetrahedron Letters, 1998, 39, 5827-5830.                                                         | 1.4 | 20        |
| 93  | Synthesis and Radical Cyclization of 2-Allylamino-3-chloropropylphenyl Sulfones to 2,4-Disubstituted Pyrrolidines. Synlett, 1998, 1998, 90-92.                                                                                              | 1.8 | 9         |
| 94  | Conjugate addition of allylic and prop-2-ynylic alcohols to 3-halogeno-1-phenylsulfonylprop-1-enes;<br>synthesis and radical induced cyclization of 2-alkenyloxy-3-halogenopropylphenyl sulfones. Chemical<br>Communications, 1997, , 1829. | 4.1 | 5         |
| 95  | Radical induced allylations of functionalized α-haloalkylphenyl sulfones. Tetrahedron Letters, 1997, 38,<br>1995-1998.                                                                                                                      | 1.4 | 17        |
| 96  | Ruthenium tetroxide catalyzed oxidations of 3-alkyl-4-(2-furyl)-4-oxobutanenitriles: Synthesis of methyl 2-alkyl-3-cyanopropanoates. Tetrahedron Letters, 1997, 38, 3781-3784.                                                              | 1.4 | 16        |
| 97  | Oxidative Ring Cleavage of 2-Nitrocycloalkanones:Â Synthesis and Radical-Induced Transformations of<br>Methyl ω,ω-Dihalo-I‰-nitroalkanoates. Journal of Organic Chemistry, 1996, 61, 5652-5655.                                             | 3.2 | 18        |
| 98  | A Stereoselective Synthesis of ( <i>E</i> )â€Î±, βâ€Unsaturated Ketones Involving the Reactions of<br>Organocerium Reagents with Secondary βâ€Enamino Ketones. Chemistry - A European Journal, 1996, 2,<br>913-918.                         | 3.3 | 33        |
| 99  | LiClO4 Mediated Substitution of β-Phenylsulfonyl-γ-oxo Arenebutanenitriles by Organomagnesium<br>Reagents. Synlett, 1996, 1996, 1001-1003.                                                                                                  | 1.8 | 9         |
| 100 | A new synthesis of (±)â€phoracantholide, (±)â€dihydrorecifeiolide, and (±)â€muscone via αâ€nitro ketones.<br>Liebigs Annalen, 1995, 1995, 1381-1383.                                                                                        | 0.8 | 13        |
| 101 | Oxidation of secondary amines to nitrones using urea-hydrogen peroxide complex (UHP) and metal catalysts. Tetrahedron Letters, 1995, 36, 3561-3562.                                                                                         | 1.4 | 81        |
| 102 | A New Procedure for the Desulfonylation of β-Keto Phenylsulfones Using Bu3SnCl/NaBH3CN Couple.<br>Synlett, 1995, 1995, 973-974.                                                                                                             | 1.8 | 13        |
| 103 | Stereoselective Total Synthesis of (+)-Lentiginosine Using a Chiral Nitrone Intermediate. Journal of Organic Chemistry, 1995, 60, 5706-5707.                                                                                                | 3.2 | 70        |
| 104 | Cerium chloride (III) promoted nucleophilic addition of organolithium reagents to<br>α-diphenylphosphinoyl ketones. An efficient method for the synthesis of horner-wittig intermediates.<br>Tetrahedron Letters, 1994, 35, 8453-8456.      | 1.4 | 28        |
| 105 | Chemo- and Diastereoselective Reduction of .betaEnamino Esters: A Convenient Synthesis of Both cis-<br>and transgammaAmino Alcohols and .betaAmino Esters. Journal of Organic Chemistry, 1994, 59,<br>5328-5335.                            | 3.2 | 197       |
| 106 | Highly stereoselective synthesis of αβ-unsaturated ketones by CeCl3mediated addition of grignard<br>reagents to β-enamino ketones. Journal of the Chemical Society Chemical Communications, 1994, ,<br>715-716.                             | 2.0 | 19        |
| 107 | CeCl3-Mediated Addition of Grignard Reagents to 1,3-Diketones. Angewandte Chemie International Edition in English, 1993, 32, 1061-1062.                                                                                                     | 4.4 | 38        |
| 108 | Retro Claisen cleavage of α-nitrocycloalkanones using trimethylsilylmethylmagnesium chloride<br>(Peterson reagent): Synthesis of functionalized β-keto-trimethylsilanes Tetrahedron Letters, 1993, 34,<br>3301-3304.                        | 1.4 | 19        |

| #   | ARTICLE                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cerium(III) chloride mediated addition of Grignard reagents to nitroalkanes: synthesis of<br>N,N-disubstituted hydroxylamines. Journal of the Chemical Society Chemical Communications, 1993, ,<br>1373.                                                       | 2.0 | 26        |
| 110 | Reactivity of .alphanitro ketones toward organometallic reagents: straightforward synthesis of tertiary .betanitroalkanols. Journal of Organic Chemistry, 1993, 58, 3368-3372.                                                                                 | 3.2 | 14        |
| 111 | Amberlyst A 21 as New and Efficient Surface Catalyst for the Cleavage of 2-Nitrocycloalkanones.<br>Synthesis, 1992, 1992, 355-357.                                                                                                                             | 2.3 | 25        |
| 112 | ω-Nitroalcohols as Precursors of Aldehydes ω-Functlonalized: A New Synthesis of 7-Acetoxyheptanal,<br>7-(2-Tetrahydropyranyloxy)Heptanaland 8-(2-Tetrahydropyranyloxy)Octanal. Synthetic<br>Communications, 1992, 22, 641-647.                                 | 2.1 | 1         |
| 113 | Hydroxy-functionalized conjugated nitroolefins as immediate precursors of spiroketals. A new<br>synthesis of 1,7-dioxaspiro[5.5]undecane and (E)-2-methyl-1,7-dioxaspiro[5.6]dodecane. Journal of the<br>Chemical Society Perkin Transactions 1, 1992, , 3159. | 0.9 | 17        |
| 114 | Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction. Journal of Organic Chemistry, 1992, 57, 5834-5840.                                                               | 3.2 | 25        |
| 115 | A nitrone-based approach to the enantioselective total synthesis of (-)-anisomycin. Journal of Organic<br>Chemistry, 1992, 57, 1316-1318.                                                                                                                      | 3.2 | 103       |
| 116 | Synthesis of functionalized nitroalkanes by oxidation of oximes with urea-hydrogen peroxide complex and trifluoroacetic anhydride. Tetrahedron Letters, 1992, 33, 4835-4838.                                                                                   | 1.4 | 57        |
| 117 | Chemoselective synthesis of functionalized conjugated nitroalkenes. Journal of Organic Chemistry, 1992, 57, 2160-2162.                                                                                                                                         | 3.2 | 94        |
| 118 | Enantioselective synthesis of nitrogen derivatives by allyl Grignard addition on optically active nitroalkanes. Journal of the Chemical Society Chemical Communications, 1991, , 793.                                                                          | 2.0 | 9         |
| 119 | An Improved and Simple Synthesis of Methyl or Ethyl 7-Oxoheptanoate and 7-Acetoxyheptanal.<br>Synthetic Communications, 1991, 21, 1075-1081.                                                                                                                   | 2.1 | 8         |
| 120 | Mechanistic studies on the reaction of nitro- and nitrosoarenes with vinyl Grignard reagents.<br>Journal of the Chemical Society Perkin Transactions II, 1991, , 657.                                                                                          | 0.9 | 61        |
| 121 | Enantioselective synthesis of the lactone moiety of the mevinic acids using D-xylose as a chiral precursor. Journal of the Chemical Society Perkin Transactions 1, 1991, , 490.                                                                                | 0.9 | 11        |
| 122 | New and efficient synthesis of ω-nitroalcohols and spiroketals by chemio- and regioselective reductive cleavage of 2-nitrocycloalkanones. Tetrahedron, 1990, 46, 7531-7538.                                                                                    | 1.9 | 44        |
| 123 | A new rearrangement of nitrones: acid promoted conversion of vlnylnitrones into<br>N-(γ-ketoalkyl)-N-phenylhydroxylamines. Tetrahedron Letters, 1990, 31, 6089-6092.                                                                                           | 1.4 | 3         |
| 124 | A new approach to the synthesis of 2-substituted indoles: reaction of dimetallated ortho-trimethylsilylmethylanilides with esters. Tetrahedron, 1990, 46, 1379-1384.                                                                                           | 1.9 | 24        |
| 125 | A New Procedure for Dethioacetalization via Equilibrium Exchange with Aqueous Acetone,<br>Paraformaldehyde and Amberlyst 15 as Acidic Catalyst. Synthesis, 1990, 1990, 336-337.                                                                                | 2.3 | 18        |
| 126 | Synthetic studies on the mevinic acids using the chiron approach: total synthesis of (+)-dihydromevinolin. Journal of Organic Chemistry, 1990, 55, 5766-5777.                                                                                                  | 3.2 | 55        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A tandem denitration-deoxygenation of .alphanitro ketones via (p-tolylsulfonyl)hydrazones with<br>lithium aluminum hydride: a practical synthesis of (Z)-9-tricosene, the sex pheromone of the housefly<br>(Musca domestica). Journal of Organic Chemistry, 1990, 55, 5159-5161. | 3.2 | 30        |
| 128 | N-allylhydroxylamines from 1,2-addition of allyl Grignard reagents to nitro compounds: generality and drawbacks of the reaction. Journal of the Chemical Society Perkin Transactions 1, 1990, , 2133.                                                                            | 0.9 | 24        |
| 129 | Reaction of aryl and alkyl nitro compounds with 2-butenylmagnesium chloride: synthesis of a new class of nitrones. Journal of Organic Chemistry, 1990, 55, 4456-4459.                                                                                                            | 3.2 | 31        |
| 130 | RECENT PROGRESS IN THE SYNTHESIS AND REACTIVITY OF NITROKETONES. A REVIEW. Organic Preparations and Procedures International, 1990, 22, 707-746.                                                                                                                                 | 1.3 | 56        |
| 131 | (Z)-7-Nitro-3-Heptene as Central Intermediate for the Synthesis of Jasmone, Methyl Jasmonate, and Î <sup>3</sup><br>Jasmolactone. Synthetic Communications, 1989, 19, 575-583.                                                                                                   | 2.1 | 16        |
| 132 | Oxidative conversion of aliphatic nitrocompounds to carbonyls using sodium chlorite. Tetrahedron Letters, 1989, 30, 5329-5332.                                                                                                                                                   | 1.4 | 28        |
| 133 | A new general synthesis of sulfones from alkyl or aryl halides and p-toluenesulfonhydrazide.<br>Tetrahedron, 1989, 45, 6791-6798.                                                                                                                                                | 1.9 | 40        |
| 134 | Amberlyst 15: A Practical, Mild and Selective Catalyst for Methyl Esterification of Carboxylic Acids. <sup>1</sup> . Synthetic Communications, 1988, 18, 847-853.                                                                                                                | 2.1 | 60        |
| 135 | Amberlyst 15, a superior, mild, and selective catalyst for carbonyl regeneration from nitrogeneous derivatives. Journal of the Chemical Society Perkin Transactions 1, 1988, , 2563.                                                                                             | 0.9 | 51        |
| 136 | Utilization of Basic Alumina in a One-Pot Synthesis of 1,4-Diketones, 1,4,7-Triketones, and<br>Dihydrojasmone by Conjugate Addition of Nitroalkanes to Enones. Synthesis, 1988, 1988, 231-233.                                                                                   | 2.3 | 24        |
| 137 | A New Oxidative Cleavage of 2-Nitrocycloalkanones by Hydrogen Peroxide: An Important, Efficient<br>Method for Dicarboxylic Acid or Ketoacid Synthesis. Synthesis, 1988, 1988, 915-917.                                                                                           | 2.3 | 9         |
| 138 | Amberlyst-A21 as a New and Efficient Surface Catalyst for the Conjugate Addition of Nitroalkanes to<br>Methyl Acrylate: An Improved Synthesis of Methyl 4-Nitro- and 4-Oxo-alkanoates. Synthesis, 1987, 1987,<br>711-713.                                                        | 2.3 | 42        |
| 139 | Reduction of Aliphatic and Aromatic Nitro Compounds with Sodium Borohydride in Tetrahydrofuran<br>Using 10% Palladium-on-Carbon as Catalyst. Synthesis, 1987, 1987, 713-714.                                                                                                     | 2.3 | 52        |
| 140 | An Improved, Simple Synthesis of 3-Methyl-2-(4-Methylphenyl) Cyclopenten-2-One: An Important<br>Intermediate in Cuparene Synthesis. Synthetic Communications, 1987, 17, 543-548.                                                                                                 | 2.1 | 10        |
| 141 | One-pot chemoselective reductive alkylation of nitroarenes: A new general method of synthesis of alkylanilines. Tetrahedron, 1987, 43, 4221-4226.                                                                                                                                | 1.9 | 15        |
| 142 | Nitromethane as d1,d1 Multiple Coupling Reagent for the Carbonyl Dianion Synthon. Practical<br>Synthesis of Chalcogran. Angewandte Chemie International Edition in English, 1986, 25, 941-942.                                                                                   | 4.4 | 32        |
| 143 | Nitromethan als d <sup>1</sup> , d <sup>1</sup> â€Mehrfachverknüpfungsreagens für das<br>Carbonyldianion‣ynthon ―eine einfache Synthese von Chalcogran. Angewandte Chemie, 1986, 98,<br>935-936.                                                                                 | 2.0 | 12        |
| 144 | Furan ring as masked 3-acylacrylate moiety. Practical synthesis of racemic<br>(E)4,4(ethylenedioxy)-7-hydroxy 2-octenoic acid, the c-8 subunit of pyrenophorin. Tetrahedron, 1986, 42,<br>151-154.                                                                               | 1.9 | 18        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Stereoselective total synthesis of racemic grandisol via 3-oximino-1,4,4-trimethylbicyclo[3.2.0]heptane.<br>An improved practical procedure. Tetrahedron, 1986, 42, 6027-6032.            | 1.9 | 18        |
| 146 | Ring Cleavage of Cyclic 2-Nitroketones by KF Catalyst: A General Synthesis of ω-Nitroacids and<br>ω-Nitroesters. Synthetic Communications, 1986, 16, 1781-1788.                           | 2.1 | 21        |
| 147 | (Z)-1-Nitro-3-hexene as (Z)-3-Hexen-1-yl d1-Reagent: Synthesis of (Z)-5-Octen-2-one and<br>(Z)-1,8-Undecadien-5-one. Synthesis, 1986, 1986, 849-852.                                      | 2.3 | 9         |
| 148 | Facile and Inexpensive Synthesis of 4-Oxoalkanoic Acids from Primary Nitroalkanes and Acrolein.<br>Synthesis, 1986, 1986, 1024-1026.                                                      | 2.3 | 34        |
| 149 | Conjugate Addition of Nitro-Derivatives to α,β-Unsaturated Carbonyl Compounds on Basic Alumina.<br>Synthesis, 1986, 1986, 237-238.                                                        | 2.3 | 49        |
| 150 | A Convenient Synthesis of (Z)-5-Undecen-2-one: A Pheromone from the Pedal Gland of the Bontebok<br>(Damaliscus dorcas dorcas). Synthesis, 1986, 1986, 46-48.                              | 2.3 | 14        |
| 151 | Tereoselective total synthesis of racemic grandisol. Tetrahedron, 1985, 41, 4633-4638.                                                                                                    | 1.9 | 36        |
| 152 | A Convenient Synthesis of 1-(2-Furyl)-2-nitroalk-1-enes on Alumina Surface without Solvent. Synthesis, 1985, 515-517.                                                                     | 2.3 | 45        |
| 153 | Methyl 8-Nitrooctanoate as Reagent for 7-Methoxycarbonylheptyl Anion Synthon: New Syntheses of<br>Methyl 9-Oxodecanoate and Methyl 9-Oxo-12-tridecenoate. Synthesis, 1985, 1985, 269-271. | 2.3 | 15        |
| 154 | Oxidation of 2-Nitroalkanols under Phase Transfer Conditions: A Mild and Efficient Synthesis of<br>Linear α-Nitro Ketones. Synthesis, 1984, 1984, 607-608.                                | 2.3 | 28        |
| 155 | A Simple Synthesis of Methyl 7-Oxoheptanoate. Synthetic Communications, 1984, 14, 827-831.                                                                                                | 2.1 | 7         |
| 156 | 2-(2-Nitroethyl)-1,3-dioxolane as reagent for 3-oxopropyl anion synthon : a new route to jasmonoid and prostaglandin intermediates. Tetrahedron, 1984, 40, 3809-3814.                     | 1.9 | 27        |