
Clifford H Thurber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4760651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turning a Telecom Fiber-Optic Cable into an Ultradense Seismic Array for Rapid Postearthquake Response in an Urban Area. Seismological Research Letters, 2022, 93, 853-865.	1.9	6
2	Temporal Changes in Seismic Velocity and Attenuation at The Geysers Geothermal Field, California, From Doubleâ€Difference Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
3	Spatial and temporal stress field changes in the focal area of the 2016 KaikÅura earthquake, New Zealand: A multi-fault process interpretation. Tectonophysics, 2022, 835, 229390.	2.2	2
4	Complex magmatic-tectonic interactions during the 2020 Makushin Volcano, Alaska, earthquake swarm. Earth and Planetary Science Letters, 2022, 587, 117538.	4.4	10
5	Fracturing and pore-fluid distribution in the Marlborough region, New Zealand from body-wave tomography: Implications for regional understanding of the KaikÅura area. Earth and Planetary Science Letters, 2022, 593, 117666.	4.4	3
6	Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing. Geophysics, 2021, 86, EN1-EN12.	2.6	22
7	Earthquakes, Location Techniques. Encyclopedia of Earth Sciences Series, 2021, , 301-308.	0.1	0
8	Nested regional-global seismic tomography and precise earthquake relocation along the Hikurangi subduction zone, New Zealand. Geophysical Journal International, 2021, 227, 1567-1590.	2.4	1
9	Ambient noise tomography of the Katmai volcanic area, Alaska. Journal of Volcanology and Geothermal Research, 2021, 419, 107373.	2.1	2
10	Double-difference seismic attenuation tomography method and its application to The Geysers geothermal field, California. Geophysical Journal International, 2021, 225, 926-949.	2.4	5
11	Aftershock Analysis of the 2018 MwÂ7.1 Anchorage, Alaska, Earthquake: Relocations and Regional Moment Tensors. Seismological Research Letters, 2020, 91, 114-125.	1.9	17
12	Teleseismic Tomography of the Laguna del Maule Volcanic Field in Chile. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019449.	3.4	11
13	Using a Deep Neural Network and Transfer Learning to Bridge Scales for Seismic Phase Picking. Geophysical Research Letters, 2020, 47, e2020GL088651.	4.0	72
14	3D Seismic Velocity Models for Alaska from Joint Tomographic Inversion of Body-Wave and Surface-Wave Data. Seismological Research Letters, 2020, 91, 3106-3119.	1.9	21
15	Integrating Magnetotelluric and Seismic Images of Silicic Magma Systems: A Case Study From the Laguna del Maule Volcanic Field, Central Chile. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020459.	3.4	11
16	Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International, 2020, 221, 1845-1855.	2.4	46
17	Using multicomponent ambient seismic noise cross-correlations to identify higher mode Rayleigh waves and improve dispersion measurements. Geophysical Journal International, 2020, 222, 1590-1605.	2.4	13
18	Active Normal Faulting, Diking, and Doming Above the Rapidly Inflating Laguna del Maule Volcanic Field, Chile, Imaged With CHIRP, Magnetic, and Focal Mechanism Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019329.	3.4	12

#	Article	IF	CITATIONS
19	Linking Magma Storage and Ascent to Eruption Volume and Composition at an Arc Caldera. Geophysical Research Letters, 2020, 47, e2020GL088122.	4.0	7
20	Seismic tomography of compressional wave velocity and attenuation structure for Makushin Volcano, Alaska. Journal of Volcanology and Geothermal Research, 2020, 393, 106804.	2.1	7
21	Earthquakes, Location Techniques. Encyclopedia of Earth Sciences Series, 2020, , 1-8.	0.1	Ο
22	Seismicity and Velocity Structure of LÅ ' ihi Submarine Volcano and Southeastern Hawai'i. Journal of Geophysical Research: Solid Earth, 2019, 124, 11380-11393.	3.4	5
23	Crustal Fault Connectivity of the M _w 7.8 2016 KaikÅura Earthquake Constrained by Aftershock Relocations. Geophysical Research Letters, 2019, 46, 6487-6496.	4.0	29
24	Three-dimensional shear wave velocity structure revealed with ambient noise tomography in the Parkfield, California region. Physics of the Earth and Planetary Interiors, 2019, 292, 67-75.	1.9	7
25	Magma Reservoir Below Laguna del Maule Volcanic Field, Chile, Imaged With Surfaceâ€Wave Tomography. Journal of Geophysical Research: Solid Earth, 2019, 124, 2858-2872.	3.4	31
26	Constraining the Oceanic Lithosphere Seismogenic Zone Using Teleseismic Relocations of the 2012 Wharton Basin Great Earthquake Sequence. Journal of Geophysical Research: Solid Earth, 2019, 124, 11938-11950.	3.4	4
27	Seismic Imaging of the Southern California Plate Boundary around the South-Central Transverse Ranges Using Double-Difference Tomography. Pure and Applied Geophysics, 2019, 176, 1117-1143.	1.9	28
28	Iterative Methods. , 2019, , 151-179.		2
29	<i>V</i> p/ <i>V</i> s tomography in the southern California plate boundary region using body and surface wave traveltime data. Geophysical Journal International, 2019, 216, 609-620.	2.4	23
30	Earthquakes: Location Techniques. Encyclopedia of Earth Sciences Series, 2019, , 1-8.	0.1	0
31	Local earthquake tomography of the Jalisco, Mexico region. Tectonophysics, 2018, 724-725, 51-64.	2.2	10
32	Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography. Geophysical Journal International, 2018, 213, 1599-1607.	2.4	1
33	Ground motion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 2018, 213, 2020-2036.	2.4	122
34	Geothermal production and reduced seismicity: Correlation and proposed mechanism. Earth and Planetary Science Letters, 2018, 482, 470-477.	4.4	22
35	Hypocenter Relocation along the Sunda Arc in Indonesia, Using a 3D Seismicâ€Velocity Model. Seismological Research Letters, 2018, 89, 603-612.	1.9	31
36	Activeâ€Source Seismic Tomography at the Brady Geothermal Field, Nevada, with Dense Nodal and Fiberâ€Optic Seismic Arrays. Seismological Research Letters, 2018, 89, 1629-1640.	1.9	36

#	Article	IF	CITATIONS
37	Inferring Magma Dynamics at Veniaminof Volcano Via Application of Ambient Noise. Geophysical Research Letters, 2018, 45, 11,650.	4.0	15
38	Seismicity and structure of Nazca Plate subduction zone in southern Peru. Earth and Planetary Science Letters, 2018, 498, 334-347.	4.4	10
39	Imaging shallow structure with active-source surface wave signal recorded by distributed acoustic sensing arrays. Earthquake Science, 2018, 31, 208-214.	0.9	11
40	Properties of Noise Crossâ€Correlation Functions Obtained from a Distributed Acoustic Sensing Array at Garner Valley, California. Bulletin of the Seismological Society of America, 2017, 107, 603-610.	2.3	82
41	Realâ€Time Earthquake Monitoring during the Second Phase of the Deep Fault Drilling Project, Alpine Fault, New Zealand. Seismological Research Letters, 2017, 88, 1443-1454.	1.9	2
42	Microseismicity and P–wave tomography of the central Alpine Fault, New Zealand. New Zealand Journal of Geology, and Geophysics, 2016, 59, 483-495.	1.8	13
43	A new algorithm for threeâ€dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research: Solid Earth, 2016, 121, 3557-3569.	3.4	89
44	3-DP- andS-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region. Geophysical Journal International, 2016, 206, 1574-1585.	2.4	19
45	Volcano deformation source parameters estimated from InSAR: Sensitivities to uncertainties in seismic tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 3002-3016.	3.4	27
46	A Graphics Processing Unit Implementation for Time–Frequency Phaseâ€Weighted Stacking. Seismological Research Letters, 2016, 87, 358-362.	1.9	21
47	Alongâ€Strike Variations in Fault Frictional Properties along the San Andreas Fault near Cholame, California, from Joint Earthquake and Lowâ€Frequency Earthquake Relocations. Bulletin of the Seismological Society of America, 2016, 106, 319-326.	2.3	2
48	Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska. Journal of Geophysical Research: Solid Earth, 2015, 120, 5664-5676.	3.4	17
49	Theory and Observations - Seismic Tomography and Inverse Methods. , 2015, , 307-337.		7
50	A non-parametric method for automatic determination of <i>P</i> -wave and <i>S</i> -wave arrival times: application to local micro earthquakes. Geophysical Journal International, 2015, 202, 1164-1179.	2.4	31
51	Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint. Pure and Applied Geophysics, 2015, 172, 1033-1052.	1.9	40
52	Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography. Journal of Geophysical Research: Solid Earth, 2015, 120, 1036-1052.	3.4	39
53	Tracking Changes in Volcanic Systems with Seismic Interferometry. , 2015, , 3767-3786.		7
54	A Graphics Processing Unit Implementation and Optimization for Parallel Double-Difference Seismic Tomography. Bulletin of the Seismological Society of America, 2014, 104, 953-961.	2.3	4

#	Article	IF	CITATIONS
55	Seismicity and seismic structure at Okmok Volcano, Alaska. Journal of Volcanology and Geothermal Research, 2014, 278-279, 103-119.	2.1	31
56	Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska. Journal of Volcanology and Geothermal Research, 2014, 276, 121-131.	2.1	13
57	Phase-Weighted Stacking Applied to Low-Frequency Earthquakes. Bulletin of the Seismological Society of America, 2014, 104, 2567-2572.	2.3	38
58	Multiscale Seismic Tomography and Earthquake Relocation Incorporating Differential Time Data: Application to the Maule Subduction Zone, Chile. Bulletin of the Seismological Society of America, 2014, 104, 1037-1044.	2.3	13
59	Imaging P and S Attenuation in the Sacramento-San Joaquin Delta Region, Northern California. Bulletin of the Seismological Society of America, 2014, 104, 2322-2336.	2.3	14
60	Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion for Three-Dimensional Seismic Structure Around SAFOD. Pure and Applied Geophysics, 2014, 171, 3013-3022.	1.9	38
61	Highâ€resolution 3â€Ð <i>P</i> wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography. Journal of Geophysical Research: Solid Earth, 2014, 119, 409-424.	3.4	15
62	Tracking Changes in Volcanic Systems with Seismic Interferometry. , 2014, , 1-23.		6
63	Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile. GSA Today, 2014, , 4-10.	2.0	63
64	Nonlinear Inverse Problems. , 2013, , 239-252.		103
65	Crustal stress and fault strength in the Canterbury Plains, New Zealand. Earth and Planetary Science Letters, 2013, 383, 173-181.	4.4	31
66	Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California. Journal of Geophysical Research: Solid Earth, 2013, 118, 1008-1014.	3.4	18
67	Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor. Geophysical Journal International, 2013, 194, 512-523.	2.4	47
68	Slow slip and tremor search at Kilauea Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 2013, 14, 367-384.	2.5	17
69	Highâ€resolution relocation of aftershocks of the M _w 7.1 Darfield, New Zealand, earthquake and implications for fault activity. Journal of Geophysical Research: Solid Earth, 2013, 118, 4184-4195.	3.4	19
70	Temporal and spatial evolution of hypocentres and anisotropy from the Darfield aftershock sequence: implications for fault geometry and age. New Zealand Journal of Geology, and Geophysics, 2012, 55, 287-293.	1.8	17
71	Determination and uncertainty of moment tensors for microearthquakes at Okmok Volcano, Alaska. Geophysical Journal International, 2012, 190, 1689-1709.	2.4	23
72	Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40°S), Chile. Geophysical Journal International, 2012, 191, 317-324.	2.4	83

#	Article	IF	CITATIONS
73	Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	41
74	Seismic velocity variations along the rupture zone of the 1989 Loma Prieta earthquake, California. Journal of Geophysical Research, 2012, 117, .	3.3	38
75	Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geological Society Special Publication, 2011, 355, 139-155.	1.3	47
76	The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009. Journal of Geophysical Research, 2011, 116, .	3.3	22
77	Aftershock Distribution as a Constraint on the Geodetic Model of Coseismic Slip for the 2004 Parkfield Earthquake. Pure and Applied Geophysics, 2011, 168, 1553-1565.	1.9	19
78	A California Statewide Three-Dimensional Seismic Velocity Model from Both Absolute and Differential Times. Bulletin of the Seismological Society of America, 2010, 100, 225-240.	2.3	71
79	Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand. Geophysical Journal International, 2010, 183, 451-460.	2.4	18
80	Variations of fluid pressure within the subducting oceanic crust and slow earthquakes. Geophysical Research Letters, 2010, 37, .	4.0	133
81	Teleseismic doubleâ€difference relocation of earthquakes along the Sumatraâ€Andaman subduction zone using a 3â€D model. Journal of Geophysical Research, 2010, 115, .	3.3	114
82	Highâ€resolution locations of triggered earthquakes and tomographic imaging of Kilauea Volcano's south flank. Journal of Geophysical Research, 2010, 115, .	3.3	26
83	Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma. Geophysical Journal International, 2010, , no-no.	2.4	30
84	High precision relocation of earthquakes at Iliamna Volcano, Alaska. Journal of Volcanology and Geothermal Research, 2009, 184, 323-332.	2.1	14
85	A method for modelling radar interferograms without phase unwrapping: application to the M 5 Fawnskin, California earthquake of 1992 December 4. Geophysical Journal International, 2009, 176, 491-504.	2.4	46
86	Location of eruption-related earthquake clusters at Augustine Volcano, Alaska, using station-pair differential times. Geophysical Journal International, 2009, 176, 1017-1022.	2.4	7
87	Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	119
88	Threeâ€dimensional passive seismic waveform imaging around the SAFOD site, California, using the generalized Radon transform. Geophysical Research Letters, 2009, 36, .	4.0	20
89	Regional threeâ€dimensional seismic velocity model of the crust and uppermost mantle of northern California. Journal of Geophysical Research, 2009, 114, .	3.3	45
90	Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis. Geophysical Journal International, 2008, 172, 957-970.	2.4	50

#	Article	IF	CITATIONS
91	Complex slab subduction beneath northern Sumatra. Geophysical Research Letters, 2008, 35, .	4.0	66
92	Three-Dimensional P-Wave Velocity Structure and Precise Earthquake Relocation at Great Sitkin Volcano, Alaska. Bulletin of the Seismological Society of America, 2008, 98, 2428-2448.	2.3	18
93	Three-Dimensional Seismic Attenuation Structure around the SAFOD Site, Parkfield, California. Bulletin of the Seismological Society of America, 2008, 98, 2934-2947.	2.3	29
94	Theory and Observations â \in " Seismic Tomography and Inverse Methods. , 2007, , 323-360.		13
95	Teleseismic Relocation and Assessment of Seismicity (1918-2005) in the Region of the 2004 Mw 9.0 Sumatra-Andaman and 2005 Mw 8.6 Nias Island Great Earthquakes. Bulletin of the Seismological Society of America, 2007, 97, S43-S61.	2.3	166
96	Global Prevalence of Double Benioff Zones. Science, 2007, 316, 1472-1474.	12.6	162
97	Imaging the heterogeneous source area of the 2003 M6.4 northern Miyagi earthquake, NE Japan, by double-difference tomography. Tectonophysics, 2007, 430, 67-81.	2.2	18
98	Imaging the source area of the 1995 southern Hyogo (Kobe) earthquake (M7.3) using double-difference tomography. Earth and Planetary Science Letters, 2007, 253, 143-150.	4.4	18
99	Threeâ€dimensional <i>P</i> wave velocity model for the San Francisco Bay region, California. Journal of Geophysical Research, 2007, 112, .	3.3	32
100	Highâ€precision earthquake location and threeâ€dimensional <i>P</i> wave velocity determination at Redoubt Volcano, Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	15
101	Threeâ€dimensional shearâ€wave splitting tomography in the Parkfield, California, region. Geophysical Research Letters, 2007, 34, .	4.0	34
102	A threeâ€dimensional crustal seismic velocity model for southern California from a composite event method. Journal of Geophysical Research, 2007, 112, .	3.3	62
103	Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophysical Journal International, 2007, 170, 337-345.	2.4	70
104	Theory and Observations â \in " Seismic Tomography and Inverse Methods. , 2007, , 323-360.		14
105	High-resolution subduction zone seismicity and velocity structure beneath Ibaraki Prefecture, Japan. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	38
106	Detailed imaging of the fault planes of the 2004 Niigata–Chuetsu, central Japan, earthquake sequence by double-difference tomography. Earth and Planetary Science Letters, 2006, 244, 32-43.	4.4	31
107	Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics, 2006, 426, 189-205.	2.2	68
108	Detailed fault structure highlighted by finely relocated aftershocks, Arthur's Pass, New Zealand. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	22

#	Article	IF	CITATIONS
109	Development and Applications of Double-difference Seismic Tomography. Pure and Applied Geophysics, 2006, 163, 373-403.	1.9	196
110	Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms for the Parkfield, California, Region. Bulletin of the Seismological Society of America, 2006, 96, S38-S49.	2.3	202
111	Imaging the Fault Planes of the 2004 Mid Niigata Prefecture (Niigata-Chuetsu) Earthquake Sequence by Applying Double-Difference Tomography to Dense Temporary Observation Network Data. Zisin (Journal) Tj ETQq1	10027843	L 4 rgBT /Ove
112	Aftershock distribution and 3D seismic velocity structure in and around the focal area of the 2004 mid Niigata prefecture earthquake obtained by applying double-difference tomography to dense temporary seismic network data. Earth, Planets and Space, 2005, 57, 435-440.	2.5	44
113	Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California. Journal of Geophysical Research, 2005, 110, .	3.3	45
114	Constraining the boundary between the Sunda and Andaman subduction systems: Evidence from the 2002 Mw7.3 Northern Sumatra earthquake and aftershock relocations of the 2004 and 2005 great earthquakes. Geophysical Research Letters, 2005, 32, .	4.0	26
115	High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology, 2004, 32, 361.	4.4	131
116	Dome growth behavior at Soufriere Hills Volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995–1996. Journal of Volcanology and Geothermal Research, 2004, 134, 199-221.	2.1	102
117	Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	68
118	Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	110
119	Precise relocation of earthquakes following the 15 June 1991 eruption of Mount Pinatubo (Philippines). Journal of Geophysical Research, 2004, 109, .	3.3	23
120	Comment on "The effect of velocity structure errors on double-difference earthquake location―by A. Michelini and A. Lomax. Geophysical Research Letters, 2004, 31, .	4.0	1
121	Geophysical images of the creeping segment of the San Andreas fault: implications for the role of crustal fluids in the earthquake process. Tectonophysics, 2004, 385, 137-158.	2.2	83
122	New constraints on seismicity in the Wellington region of New Zealand from relocated earthquake hypocentres. Geophysical Journal International, 2004, 158, 1088-1102.	2.4	31
123	Seismic Velocity and Attenuation Structure of the East Rift Zone and South Flank of Kilauea Volcano, Hawaii. Bulletin of the Seismological Society of America, 2004, 94, 1430-1440.	2.3	52
124	Earthquake Relocation Using Cross-Correlation Time Delay Estimates Verified with the Bispectrum Method. Bulletin of the Seismological Society of America, 2004, 94, 856-866.	2.3	64
125	Upper Crustal Structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic Results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II). Bulletin of the Seismological Society of America, 2004, 94, 619-632.	2.3	29
126	Seismic Tomography of the Lithosphere with Body Waves. Pure and Applied Geophysics, 2003, 160, 717-737.	1.9	16

#	Article	IF	CITATIONS
127	The Influence of Path Corrections and a Three-dimensional Global P -wave Velocity Model on Seismic Event Location in Kazakhstan. Pure and Applied Geophysics, 2003, 160, 2239-2255.	1.9	2
128	Relocation of seismicity preceding the 1984 eruption of Mauna Loa Volcano, Hawaii: Delineation of a possible failed rift. Journal of Volcanology and Geothermal Research, 2003, 128, 327-339.	2.1	8
129	Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas fault near Parkfield, CA: Preparing for SAFOD. Geophysical Research Letters, 2003, 30, .	4.0	89
130	Double-Difference Tomography: The Method and Its Application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 2003, 93, 1875-1889.	2.3	673
131	Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings. Bulletin of the Seismological Society of America, 2003, 93, 1904-1912.	2.3	339
132	Seismic Tomography of the Lithosphere with Body Waves. , 2003, , 717-737.		4
133	Ground truth seismic events and location capability at Degelen mountain, Kazakhstan. Physics of the Earth and Planetary Interiors, 2002, 131, 155-171.	1.9	2
134	Three-dimensional Kirchhoff migration: Imaging of the Jemez volcanic field using teleseismic data. Journal of Geophysical Research, 2002, 107, ESE 11-1-ESE 11-15.	3.3	22
135	Tomographic image of P-velocity structure beneath Kilauea's East Rift Zone and South Flank: Seismic evidence for a deep magma body. Geophysical Research Letters, 2001, 28, 375-378.	4.0	32
136	High-precision location of pre-eruption seismicity at Mount Pinatubo, Philippines, 30 May–3 June, 1991. Physics of the Earth and Planetary Interiors, 2001, 123, 221-232.	1.9	14
137	Nuclear explosion locations at the Balapan, Kazakhstan, nuclear test site: the effects of high-precision arrival times and three-dimensional structure. Physics of the Earth and Planetary Interiors, 2001, 123, 283-301.	1.9	25
138	Advances in Travel-Time Calculations for Three-Dimensional Structures. Modern Approaches in Geophysics, 2000, , 71-99.	0.1	13
139	Local earthquake tomography with flexible gridding. Computers and Geosciences, 1999, 25, 809-818.	4.2	283
140	Multinational seismic investigation focuses on Rabaul volcano. Eos, 1999, 80, 269.	0.1	4
141	Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California: Results from the Los Angeles Region Seismic Experiment. Journal of Geophysical Research, 1999, 104, 25543-25565.	3.3	32
142	Assessment of Creep Events as Potential Earthquake Precursors: Application to the Creeping Section of the San Andreas Fault, California. Pure and Applied Geophysics, 1998, 152, 685-705.	1.9	16
143	Crust and upper mantlePwave velocity structure beneath Valles Caldera, New Mexico: Results from the Jemez teleseismic tomography experiment. Journal of Geophysical Research, 1998, 103, 24301-24320.	3.3	93
144	"Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines" Edited by Christopher G. Newhall and Raymundo S. Punongbayan. Seismological Research Letters, 1998, 69, 123-123.	1.9	0

#	Article	IF	CITATIONS
145	Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone. Geophysical Research Letters, 1997, 24, 1591-1594.	4.0	100
146	Imaging the San Andreas Fault with explosion and earthquake sources. Eos, 1996, 77, 45.	0.1	7
147	Creep events preceding small to moderate earthquakes on the San Andreas fault. Nature, 1996, 380, 425-428.	27.8	9
148	Modelling of near-surface seismic structure beneath Hawaii using reverberations. Geophysical Journal International, 1995, 122, 441-456.	2.4	2
149	Teleseismic P-wave image of crust and upper mantle structure beneath the Valles Caldera, New Mexico: Initial Results from the 1993 JTEX Passive Array. Geophysical Research Letters, 1995, 22, 505-508.	4.0	23
150	Three-dimensional Vp and Vp/Vs structure at Loma Prieta, California, from local earthquake tomography. Geophysical Research Letters, 1995, 22, 3079-3082.	4.0	45
151	Crustal shear wave anisotropy in southern Hawaii: Spatial and temporal analysis. Journal of Geophysical Research, 1995, 100, 20367-20377.	3.3	33
152	Observations of ambient noise and signal coherency on the Island of Hawaii for teleseismic studies. Bulletin of the Seismological Society of America, 1994, 84, 1229-1242.	2.3	6
153	Accurate locations of nuclear explosions in Balapan, Kazakhstan, 1987 to 1989. Geophysical Research Letters, 1993, 20, 399-402.	4.0	18
154	Observations of shear wave splitting on the southeast flank of Mauna Loa Volcano, Hawaii. Geophysical Research Letters, 1993, 20, 1139-1142.	4.0	7
155	Profile of discontinuities beneath Hawaii from S to P converted seismic waves. Geophysical Research Letters, 1992, 19, 111-114.	4.0	13
156	Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors, 1992, 75, 55-62.	1.9	138
157	Seismic velocity structure and event relocation in Kazakhstan from secondary <i>P</i> phases. Bulletin of the Seismological Society of America, 1992, 82, 2494-2510.	2.3	16
158	Hypocenter constraint with regional seismic data: A theoretical analysis for the natural resources defense council network in Kazakhstan, USSR. Journal of Geophysical Research, 1991, 96, 10159-10176.	3.3	4
159	Comment on "A search for seismic reflections from the top of the oceanic crust beneath Hawaii―by D. E. James and M. K. Savage. Bulletin of the Seismological Society of America, 1991, 81, 1030-1034.	2.3	2
160	Seismic detection of a lowâ€velocity layer beneath the southeast flank of Mauna Loa, Hawaii. Geophysical Research Letters, 1989, 16, 649-652.	4.0	21
161	Regional seismic event location with a sparse network: Application to eastern Kazakhstan, USSR. Journal of Geophysical Research, 1989, 94, 17767-17780.	3.3	18
162	Flexure and seismicity beneath the south flank of Kilauea Volcano and tectonic implications. Journal of Geophysical Research, 1988, 93, 4271-4278.	3.3	84

#	ARTICLE	IF	CITATIONS
163	Source properties of two microearthquakes at Kilauea Volcano, Hawaii. Bulletin of the Seismological Society of America, 1988, 78, 1123-1132.	2.3	32
164	Three-Dimensional Seismic Imaging. Annual Review of Earth and Planetary Sciences, 1987, 15, 115-139.	11.0	56
165	The relationship between earthquake swarms and magma transport: Kilauea volcano, Hawaii. Pure and Applied Geophysics, 1987, 125, 971-991.	1.9	44
166	A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 1987, 77, 972-986.	2.3	716
167	Analysis methods for kinematic data from local earthquakes. Reviews of Geophysics, 1986, 24, 793-805.	23.0	52
168	The deep structure of lunar basins: Implications for basin formation and modification. Journal of Geophysical Research, 1985, 90, 3049-3064.	3.3	62
169	Nonlinear earthquake location: Theory and examples. Bulletin of the Seismological Society of America, 1985, 75, 779-790.	2.3	93
170	Seismic Detection of the Summit Magma Complex of Kilauea Volcano, Hawaii. Science, 1984, 223, 165-167.	12.6	88
171	Earthquake locations and threeâ€dimensional crustal structure in the Coyote Lake Area, central California. Journal of Geophysical Research, 1983, 88, 8226-8236.	3.3	781
172	Rapid solution of ray tracing problems in heterogeneous media. Bulletin of the Seismological Society of America, 1980, 70, 1137-1148.	2.3	94
173	Martian lithospheric thickness from elastic flexure theory. Geophysical Research Letters, 1978, 5, 977-980.	4.0	47