Andreas Heyden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4760322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unraveling Unique Surface Chemistry of Transition Metal Nitrides in Controlling Selective C–O Bond Scission Pathways of Glycerol. Jacs Au, 2022, 2, 367-379.	7.9	10
2	Probing surface-adsorbate interactions through active particle dynamics. Journal of Colloid and Interface Science, 2022, 614, 425-435.	9.4	7
3	Propane Dehydrogenation on Platinum Catalysts: Identifying the Active Sites through Bayesian Analysis. ACS Catalysis, 2022, 12, 2487-2498.	11.2	15
4	Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins. Journal of the American Chemical Society, 2022, 144, 5323-5334.	13.7	60
5	Understanding Selective Hydrodeoxygenation of 1,2- and 1,3-Propanediols on Cu/Mo ₂ C via Multiscale Modeling. ACS Catalysis, 2022, 12, 4581-4596.	11.2	2
6	Supported Bifunctional Molybdenum Oxide-Palladium Catalysts for Selective Hydrodeoxygenation of Biomass-Derived Polyols and 1,4-Anhydroerythritol. ACS Sustainable Chemistry and Engineering, 2022, 10, 5719-5727.	6.7	12
7	Dilute Limit Alloy Pd–Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined Infrared Spectroscopic and Density Functional Theory Investigation. Journal of Physical Chemistry C, 2022, 126, 11111-11128.	3.1	4
8	Surface structure sensitivity of hydrodeoxygenation of biomass-derived organic acids over palladium catalysts: a microkinetic modeling approach. Catalysis Science and Technology, 2021, 11, 6163-6181.	4.1	4
9	Kinetics Study of the Hydrodeoxygenation of Xylitol over a ReOx-Pd/CeO2 Catalyst. Catalysts, 2021, 11, 108.	3.5	11
10	Aqueous-phase effects on ethanol decomposition over Ru-based catalysts. Catalysis Science and Technology, 2021, 11, 6695-6707.	4.1	2
11	Computational Investigation of the Catalytic Hydrodeoxygenation of Propanoic Acid over a Cu(111) Surface. Journal of Physical Chemistry C, 2021, 125, 19276-19293.	3.1	3
12	Comparative Study on the Machine Learning-Based Prediction of Adsorption Energies for Ring and Chain Species on Metal Catalyst Surfaces. Journal of Physical Chemistry C, 2021, 125, 17742-17748.	3.1	10
13	Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 in the presence of nitric oxide based on parameters obtained from first-principles calculations. Catalysis Science and Technology, 2021, 11, 3539-3555.	4.1	3
14	An ab initio study of the oxygen defect formation and oxide ion migration in (Sr1-xPrx)2FeO4±δ. Journal of Power Sources, 2021, 515, 230602.	7.8	5
15	Kinetic and Mechanistic Analysis of the Hydrodeoxygenation of Propanoic Acid on Pt/SiO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 16171-16187.	3.7	2
16	Unraveling the mechanism of the hydrodeoxygenation of propionic acid over a Pt (1Â1Â1) surface in vapor and liquid phases. Journal of Catalysis, 2020, 381, 547-560.	6.2	14
17	Catalytic upcycling of high-density polyethylene via a processive mechanism. Nature Catalysis, 2020, 3, 893-901.	34.4	262
18	Highly Efficient Deoxydehydration and Hydrodeoxygenation on MoS ₂ -Supported Transition-Metal Atoms through a C–H Activation Mechanism. ACS Catalysis, 2020, 10, 11346-11355.	11.2	10

#	Article	IF	CITATIONS
19	Investigation of the reaction mechanism of the hydrodeoxygenation of propionic acid over a Rh(1 1 1) surface: A first principles study. Journal of Catalysis, 2020, 391, 98-110.	6.2	8
20	Dependency of solvation effects on metal identity in surface reactions. Communications Chemistry, 2020, 3, .	4.5	15
21	Deoxydehydration of 1,4-anhydroerythritol over anatase TiO ₂ (101)-supported ReO _x and MoO _x . Catalysis Science and Technology, 2020, 10, 3731-3738.	4.1	13
22	Understanding the effect of Mo2C support on the activity of Cu for the hydrodeoxygenation of glycerol. Journal of Catalysis, 2020, 388, 141-153.	6.2	12
23	In-Situ Oxygen Isotopic Exchange Vibrational Spectroscopy of Rhenium Oxide Surface Structures on Cerium Oxide. Journal of Physical Chemistry C, 2020, 124, 7174-7181.	3.1	11
24	Theoretical Investigation of Solvent Effects on the Hydrodeoxygenation of Propionic Acid over a Ni(111) Catalyst Model. Journal of Physical Chemistry C, 2020, 124, 16488-16500.	3.1	10
25	Oxidative dehydrogenation of propane on the oxygen adsorbed edges of boron nitride nanoribbons. Catalysis Science and Technology, 2020, 10, 5181-5195.	4.1	10
26	A Multiple Filter Based Neural Network Approach to the Extrapolation of Adsorption Energies on Metal Surfaces for Catalysis Applications. Journal of Chemical Theory and Computation, 2020, 16, 1105-1114.	5.3	24
27	Selective activation of methane C H bond in the presence of methanol. Journal of Catalysis, 2020, 386, 12-18.	6.2	6
28	Preferential Oxidation of CO in Hydrogen at Nonmetal Active Sites with High Activity and Selectivity. ACS Catalysis, 2020, 10, 5362-5370.	11.2	8
29	Understanding the Nature and Activity of Supported Platinum Catalysts for the Water–Gas Shift Reaction: From Metallic Nanoclusters to Alkali-Stabilized Single-Atom Cations. ACS Catalysis, 2019, 9, 7721-7740.	11.2	48
30	Computational Investigation of Aqueous Phase Effects on the Dehydrogenation and Dehydroxylation of Polyols over Pt(111). Journal of Physical Chemistry C, 2019, 123, 19052-19065.	3.1	21
31	Investigation of solvent effects in the hydrodeoxygenation of levulinic acid to Î ³ -valerolactone over Ru catalysts. Journal of Catalysis, 2019, 379, 164-179.	6.2	42
32	Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 1795-1803.	11.3	283
33	Direct Oxidation of Methane to Methanol Enabled by Electronic Atomic Monolayer–Metal Support Interaction. ACS Catalysis, 2019, 9, 6073-6079.	11.2	36
34	Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 6624-6647.	11.2	134
35	Optimum Reaction Conditions for 1,4-Anhydroerythritol and Xylitol Hydrodeoxygenation over a ReO _{<i>x</i>} –Pd/CeO ₂ Catalyst via Design of Experiments. Industrial & Engineering Chemistry Research, 2019, 58, 8681-8689.	3.7	16
36	Microkinetic analysis of acetone hydrogenation over Pt/SiO2. Journal of Catalysis, 2019, 374, 183-198.	6.2	22

#	Article	IF	CITATIONS
37	Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning. Journal of Physical Chemistry C, 2019, 123, 29804-29810.	3.1	21
38	Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts. Catalysis Science and Technology, 2019, 9, 6253-6273.	4.1	28
39	Liquid-Phase Modeling in Heterogeneous Catalysis. ACS Catalysis, 2018, 8, 2188-2194.	11.2	101
40	Identifying Active Sites of the Water–Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty. ACS Catalysis, 2018, 8, 3990-3998.	11.2	49
41	Mechanistic study of the ceria supported, re-catalyzed deoxydehydration of vicinal OH groups. Catalysis Science and Technology, 2018, 8, 5750-5762.	4.1	24
42	Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning. Journal of Physical Chemistry C, 2018, 122, 28142-28150.	3.1	74
43	Controlling reaction pathways of selective C–O bond cleavage of glycerol. Nature Communications, 2018, 9, 4612.	12.8	54
44	Microkinetic analysis of C3–C5 ketone hydrogenation over supported Ru catalysts. Journal of Catalysis, 2017, 348, 59-74.	6.2	24
45	Understanding Active Sites in the Water–Gas Shift Reaction for Pt–Re Catalysts on Titania. ACS Catalysis, 2017, 7, 2597-2606.	11.2	34
46	Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports. ACS Catalysis, 2017, 7, 301-309.	11.2	78
47	Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society, 2017, 139, 5201-5209.	13.7	178
48	Importance of Angelica Lactone Formation in the Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over a Ru(0001) Model Surface. Journal of Physical Chemistry C, 2017, 121, 18746-18761.	3.1	21
49	Theoretical Investigation of the Hydrodeoxygenation of Levulinic Acid to Î ³ -Valerolactone over Ru(0001). ACS Catalysis, 2017, 7, 215-228.	11.2	65
50	Titaniaâ€Supported Singleâ€Atom Platinum Catalyst for Waterâ€Gas Shift Reaction. Chemie-Ingenieur-Technik, 2017, 89, 1343-1349.	0.8	22
51	Uncertainty Quantification Framework Applied to the Water–Gas Shift Reaction over Pt-Based Catalysts. Journal of Physical Chemistry C, 2016, 120, 10328-10339.	3.1	56
52	β-O-4 Bond Cleavage Mechanism for Lignin Model Compounds over Pd Catalysts Identified by Combination of First-Principles Calculations and Experiments. ACS Catalysis, 2016, 6, 5589-5598.	11.2	116
53	Ethylene glycol reforming on Pt(111): first-principles microkinetic modeling in vapor and aqueous phases. Catalysis Science and Technology, 2016, 6, 8242-8256.	4.1	35
54	Solvation Effects in the Hydrodeoxygenation of Propanoic Acid over a Model Pd(211) Catalyst. Journal of Physical Chemistry C, 2016, 120, 2724-2736.	3.1	40

#	Article	IF	CITATIONS
55	Solvent effects in the liquid phase hydrodeoxygenation of methyl propionate over a Pd(1 1 1) catalyst model. Journal of Catalysis, 2016, 333, 171-183.	6.2	37
56	Unraveling the mechanism of propanoic acid hydrodeoxygenation on palladium using deuterium kinetic isotope effects. Journal of Molecular Catalysis A, 2015, 406, 85-93.	4.8	12
57	Effect of Palladium Surface Structure on the Hydrodeoxygenation of Propanoic Acid: Identification of Active Sites. Journal of Physical Chemistry C, 2015, 119, 1928-1942.	3.1	20
58	Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0 0 0 1) model surface. Journal of Catalysis, 2015, 324, 14-24.	6.2	45
59	Theoretical Investigation of the Reaction Mechanism of the Guaiacol Hydrogenation over a Pt(111) Catalyst. ACS Catalysis, 2015, 5, 2423-2435.	11.2	111
60	Toward rational design of stable, supported metal catalysts for aqueous-phase processing: Insights from the hydrogenation of levulinic acid. Journal of Catalysis, 2015, 329, 10-21.	6.2	65
61	Reaction kinetics of the electrochemical oxidation of CO and syngas fuels on a Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^δ} perovskite anode. Journal of Materials Chemistry A, 2015, 3, 21618-21629.	10.3	13
62	<i>In Situ</i> Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Methanol Oxidation on Pt(111) and Pt–Re Alloys. Journal of Physical Chemistry C, 2015, 119, 23082-23093.	3.1	20
63	Active Sites in Copper-Based Metal–Organic Frameworks: Understanding Substrate Dynamics, Redox Processes, and Valence-Band Structure. Journal of Physical Chemistry C, 2015, 119, 27457-27466.	3.1	87
64	Theoretical investigation of the reaction mechanism of the hydrodeoxygenation of guaiacol over a Ru(0 0 0 1) model surface. Journal of Catalysis, 2015, 321, 39-50.	6.2	100
65	Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3. Journal of Power Sources, 2014, 245, 875-885.	7.8	19
66	Adaptive-Partitioning QM/MM Dynamics Simulations: 3. Solvent Molecules Entering and Leaving Protein Binding Sites. Journal of Chemical Theory and Computation, 2014, 10, 4765-4776.	5.3	36
67	Investigation of the high-temperature redox chemistry of Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^î^} via in situ neutron diffraction. Journal of Materials Chemistry A, 2014, 2, 4045-4054.	10.3	19
68	Water–Gas Shift Catalysis at Corner Atoms of Pt Clusters in Contact with a TiO ₂ (110) Support Surface. ACS Catalysis, 2014, 4, 3654-3662.	11.2	56
69	Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces. Catalysis Science and Technology, 2014, 4, 3981-3992.	4.1	18
70	Theoretical Investigation of H ₂ Oxidation on the Sr ₂ Fe _{1.5} Mo _{0.5} O ₆ (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions. Journal of the American Chemical Society, 2014, 136, 8374-8386.	13.7	68
71	Analysis of Kinetics and Reaction Pathways in the Aqueous-Phase Hydrogenation of Levulinic Acid To Form Î ³ -Valerolactone over Ru/C. ACS Catalysis, 2014, 4, 1171-1181.	11.2	265
72	Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal–Water Interfaces. Journal of Chemical Theory and Computation, 2014, 10, 3354-3368.	5.3	42

#	Article	IF	CITATIONS
73	Mechanism of Sulfur Poisoning of Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-ŕ} Perovskite Anode under Solid Oxide Fuel Cell Conditions. Journal of Physical Chemistry C, 2014, 118, 23545-23552.	3.1	23
74	Hydrodeoxygenation of propanoic acid over silica-supported palladium: effect of metal particle size. Catalysis Science and Technology, 2014, 4, 3909-3916.	4.1	25
75	On the Importance of the Associative Carboxyl Mechanism for the Water-Gas Shift Reaction at Pt/CeO ₂ Interface Sites. Journal of Physical Chemistry C, 2014, 118, 6314-6323.	3.1	47
76	Solvent effects on the hydrodeoxygenation of propanoic acid over Pd(111) model surfaces. Green Chemistry, 2014, 16, 605-616.	9.0	51
77	On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts. Journal of Catalysis, 2014, 309, 314-324.	6.2	142
78	Origin of the unique activity of Pt/TiO2 catalysts for the water–gas shift reaction. Journal of Catalysis, 2013, 306, 78-90.	6.2	76
79	Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(111) model surfaces based on parameters obtained from first principles. Journal of Catalysis, 2013, 305, 56-66.	6.2	81
80	Enhanced reducibility and conductivity of Na/K-doped SrTi0.8Nb0.2O3. Journal of Materials Chemistry A, 2013, 1, 10546.	10.3	20
81	Obtaining mixed ionic/electronic conductivity in perovskite oxides in a reducing environment: A computational prediction for doped SrTiO3. Solid State Ionics, 2012, 228, 37-45.	2.7	19
82	Nucleation, Growth, and Adsorbate-Induced Changes in Composition for Co–Au Bimetallic Clusters on TiO ₂ . Journal of Physical Chemistry C, 2012, 116, 24616-24629.	3.1	31
83	Theoretical Investigation of the Reaction Mechanism of the Decarboxylation and Decarbonylation of Propanoic Acid on Pd(111) Model Surfaces. Journal of Physical Chemistry C, 2012, 116, 14328-14341.	3.1	70
84	Nature of Pt _{<i>n</i>} /CeO ₂ (111) Surface under Water–Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study. Journal of Physical Chemistry C, 2012, 116, 9029-9042.	3.1	34
85	Combined DFT and Microkinetic Modeling Study of Hydrogen Oxidation at the Ni/YSZ Anode of Solid Oxide Fuel Cells. Journal of Physical Chemistry Letters, 2012, 3, 2767-2772.	4.6	46
86	New Implicit Solvation Scheme for Solid Surfaces. Journal of Physical Chemistry C, 2012, 116, 22458-22462.	3.1	47
87	Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201, 43-48.	7.8	52
88	Synthesis and characterization of Mo-doped SrFeO3â~'δ as cathode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 202, 63-69.	7.8	147
89	Nature of Pt _{<i>n</i>} /TiO ₂ (110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study. Journal of Physical Chemistry C, 2011, 115, Deasity Machine I theory study on the electronic structure of <pre>cond::::::::::::::::::::::::::::::::::::</pre>	3.1	44
90	and <mml:math <br="" xmlns:mml="http://www.w3.org/1996/Math/MathML">display="inline"><mml:mi>r/mml:mi></mml:mi></mml:math> -type doped SrTiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math </mml:math 	3.2	16

#	Article	IF	CITATIONS
91	Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study. Journal of Chemical Physics, 2010, 133, 164703.	3.0	59
92	Adsorbate-Induced Changes in the Surface Composition of Bimetallic Clusters: Ptâ^'Au on TiO ₂ (110). Journal of Physical Chemistry C, 2010, 114, 21652-21663.	3.1	70
93	Solving the equations of motion for mixed atomistic and coarse-grained systems. Molecular Simulation, 2009, 35, 962-973.	2.0	27
94	Conservative Algorithm for an Adaptive Change of Resolution in Mixed Atomistic/Coarse-Grained Multiscale Simulations. Journal of Chemical Theory and Computation, 2008, 4, 217-221.	5.3	94
95	Tight-Binding Configuration Interaction (TBCI): A Noniterative Approach to Incorporating Electrostatics into Tight Binding. Journal of Chemical Theory and Computation, 2008, 4, 804-818.	5.3	9
96	A Reaction Mechanism for the Nitrous Oxide Decomposition on Binuclear Oxygen Bridged Iron Sites in Fe-ZSM-5. Journal of Physical Chemistry C, 2007, 111, 2092-2101.	3.1	80
97	Adaptive Partitioning in Combined Quantum Mechanical and Molecular Mechanical Calculations of Potential Energy Functions for Multiscale Simulations. Journal of Physical Chemistry B, 2007, 111, 2231-2241.	2.6	172
98	Microkinetic modeling of nitrous oxide decomposition on dinuclear oxygen bridged iron sites in Fe-ZSM-5. Journal of Catalysis, 2007, 248, 213-225.	6.2	63
99	Nitrous Oxide Decomposition over Fe-ZSM-5 in the Presence of Nitric Oxide: A Comprehensive DFT Study. Journal of Physical Chemistry B, 2006, 110, 17096-17114.	2.6	77
100	Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 2006, 8, 3172-3191.	2.8	2,597
101	Kinetic modeling of nitrous oxide decomposition on Fe-ZSM-5 based on parameters obtained from first-principles calculations. Journal of Catalysis, 2005, 233, 26-35.	6.2	68
102	Comprehensive DFT Study of Nitrous Oxide Decomposition over Fe-ZSM-5 ChemInform, 2005, 36, no.	0.0	0
103	Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. Journal of Chemical Physics, 2005, 123, 224101.	3.0	662
104	Comprehensive DFT Study of Nitrous Oxide Decomposition over Fe-ZSM-5â€. Journal of Physical Chemistry B, 2005, 109, 1857-1873.	2.6	176
105	A growing string method for determining transition states: Comparison to the nudged elastic band and string methods. Journal of Chemical Physics, 2004, 120, 7877-7886.	3.0	293
106	Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: A grand canonical Monte Carlo simulation study. Chemical Engineering Science, 2002, 57, 2439-2448.	3.8	31