E S Estacio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759790/publications.pdf

Version: 2024-02-01

394421 526287 1,060 167 19 27 citations h-index g-index papers 167 167 167 932 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Transmission of terahertz radiation using a microstructured polymer optical fiber. Optics Letters, 2008, 33, 902.	3.3	109
2	Efficient electro-optic sampling detection of terahertz radiation via Cherenkov phase matching. Optics Express, 2011, 19, 19901.	3.4	46
3	Proposed design principle of fluoride-based materials for deep ultraviolet light emitting devices. Optical Materials, 2007, 30, 15-17.	3.6	45
4	Pr3+-doped fluoro-oxide lithium glass as scintillator for nuclear fusion diagnostics. Review of Scientific Instruments, 2009, 80, 113504.	1.3	41
5	Non-ellipsometric detection of terahertz radiation using heterodyne EO sampling in the Cherenkov velocity matching scheme. Optics Express, 2013, 21, 9277.	3.4	38
6	Vacuum ultraviolet luminescence from a micro-pulling-down method grown Nd3+:(La0.9,Ba0.1)F2.9. Journal of Luminescence, 2009, 129, 1629-1631.	3.1	28
7	Low-loss single-mode terahertz waveguiding using Cytop. Applied Physics Letters, 2006, 89, 211119.	3.3	26
8	Response-time improved hydrothermal-method-grown ZnO scintillator for soft x-ray free-electron laser timing-observation. Review of Scientific Instruments, 2010, 81, 033102.	1.3	25
9	\${hbox {Nd}}^{3+}{hbox {:LaF}}_{3}\$ as a Step-Wise Excited Scintillator for Femtosecond Ultraviolet Pulses. IEEE Transactions on Nuclear Science, 2010, 57, 1208-1210.	2.0	25
10	Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Applied Physics Letters, 2009, 94, 232104.	3.3	24
11	Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm. IEEE Transactions on Nuclear Science, 2010, 57, 1204-1207.	2.0	24
12	Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Materials Science in Semiconductor Processing, 2016, 45, 27-31.	4.0	24
13	Nd ³⁺ :(La _{1-x} Ba _x)F _{3-x} Grown by Micro-Pulling Down Method as Vacuum Ultraviolet Scintillator and Potential Laser Material. Japanese Journal of Applied Physics, 2007, 46, L985.	1.5	23
14	Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs. Applied Physics Letters, 2007, 90, 151915.	3.3	22
15	Laser Quality Ce ³⁺ :LiCaAlF ₆ Grown by Micro-Pulling-Down Method. Japanese Journal of Applied Physics, 2008, 47, 5605.	1.5	22
16	Development of Vacuum Ultraviolet Streak Camera System for the Evaluation of Vacuum Ultraviolet Emitting Materials. Japanese Journal of Applied Physics, 2009, 48, 096503.	1.5	21
17	Photoconductive Emission and Detection of Terahertz Pulsed Radiation Using Semiconductors and Semiconductor Devices. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 393-404.	2.2	21
18	Terahertz emission from GaAs-AlGaAs core-shell nanowires on Si (100) substrate: Effects of applied magnetic field and excitation wavelength. Applied Physics Letters, 2013, 102, .	3.3	20

#	Article	IF	Citations
19	Birefringence of \hat{l}^2 -BaB2O4 crystal in the terahertz region for parametric device design. Applied Physics Letters, 2008, 92, .	3.3	19
20	Photonic-crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling. Applied Physics Letters, 2005, 87, 151114.	3.3	18
21	Vacuum ultraviolet optical properties of a micro-pulling-down-method grown Nd^3+:(La_09,Ba_01)F_29. Journal of the Optical Society of America B: Optical Physics, 2008, 25, B27.	2.1	18
22	Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 291.	2.1	18
23	Highly sensitive electro-optic sampling of terahertz waves using field enhancement in a tapered waveguide structure. Applied Physics Express, 2014, 7, 112401.	2.4	16
24	Low temperature-grown GaAs carrier lifetime evaluation by double optical pump terahertz time-domain emission spectroscopy. Optics Express, 2016, 24, 26175.	3.4	16
25	Note: Light output enhanced fast response and low afterglow L6i glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 106105.	1.3	14
26	Fast-Scan Terahertz Time Domain Spectrometer Based on Laser Repetition Frequency Modulation. Japanese Journal of Applied Physics, 2013, 52, 022401.	1.5	14
27	Response-time improved hydrothermal-method-grown ZnO scintillator for XFEL timing-observation. Optical Materials, 2010, 32, 1305-1308.	3.6	13
28	Noncollinear Electro-Optic Sampling of Terahertz Waves in a Thick GaAs Crystal. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 732-736.	3.1	13
29	Photoconductivity, carrier lifetime and mobility evaluation of GaAs films on Si (100) using optical pump terahertz probe measurements. Semiconductor Science and Technology, 2019, 34, 035031.	2.0	13
30	Development of Resistance-Based pH Sensor Using Zinc Oxide Nanorods. Journal of Nanoscience and Nanotechnology, 2016, 16, 6102-6106.	0.9	12
31	Observation of high junction electric fields in modulation-doped GaAs/AlGaAs heterostructures by room temperature photoreflectance spectroscopy. Journal of Applied Physics, 2002, 91, 3717-3720.	2.5	11
32	Observation of blue-shifted photoluminescence in stacked InAs/GaAs quantum dots. Journal of Crystal Growth, 2003, 251, 196-200.	1.5	11
33	Custom-designed scintillator for laser fusion diagnostics – Pr3+-doped fluoro-phosphate lithium glass scintillator. Optical Materials, 2010, 32, 1393-1396.	3.6	11
34	Structural and optical characterization and scintillator application of hydrothermal-grown ZnO microrods. Optical Materials, 2017, 65, 82-87.	3.6	11
35	Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy. Optics Express, 2015, 23, 14532.	3.4	9
36	Amplification of Ultraviolet Femtosecond Pulse by a Micro-Pulling Down Method-Grown Ce:LiCAF Crystal in a Prismatic Cell-Type, Side-Pumping Configuration. Japanese Journal of Applied Physics, 2009, 48, 120213.	1.5	8

#	Article	IF	Citations
37	Intense terahertz emission from undoped GaAs/n-type GaAs andÂlnAs/AlSb structures grown on Si substrates in the transmission-geometry excitation. Applied Physics B: Lasers and Optics, 2011, 103, 825-829.	2.2	8
38	Saturation and Polarization Characteristics of $1.56 \hat{A} \hat{1} / 4 \text{m}$ Optical Probe Pulses in a LTG-GaAs Photoconductive Antenna Terahertz Detector. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 423-430.	2.2	8
39	Cherenkov-phase-matched nonlinear optical detection and generation of terahertz radiation via GaAs with metal-coating. Optics Express, 2016, 24, 24980.	3.4	8
40	True bulk As-antisite defect in GaAs($1\hat{A}1\hat{A}0$) identified by DFT calculations and probed by STM/STS measurements. Applied Surface Science, 2020, 511, 145590.	6.1	8
41	Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion. Review of Scientific Instruments, 2010, 81, 10D303.	1.3	7
42	Micro-pulling-down-method-grown Ce:LiCAF crystal for side-pumped laser amplifier. Journal of Crystal Growth, 2011, 318, 737-740.	1.5	7
43	Tin Oxide-Silver Composite Nanomaterial Coating for UV Protection and Its Bactericidal Effect on Escherichia coli (E. coli). Coatings, 2014, 4, 320-328.	2.6	7
44	Mapping of temporal coherence function for ultrafast lasers via statistical fringe analysis of reconstructed phase maps. Optics Communications, 2014, 329, 190-195.	2.1	7
45	Terahertz emission and photoluminescence of silicon nanowires electrolessly etched on the surface of silicon (100), (110), and (111) substrates for photovoltaic cell applications. Photonics and Nanostructures - Fundamentals and Applications, 2017, 24, 1-6.	2.0	7
46	Terahertz surface emission from Cu2ZnSnSe4 thin film photovoltaic material excited by femtosecond laser pulses. Applied Physics Letters, 2014, 105, .	3.3	6
47	Atomically-resolved interface imaging and terahertz emission measurements of gallium arsenide epilayers. Journal of Applied Physics, 2019, 126, .	2.5	6
48	Low-temperature carrier dynamics in MBE-grown InAs/GaAs single- and multi-layered quantum dots investigated via photoluminescence and terahertz time-domain spectroscopy. Optical Materials Express, 2020, 10, 178.	3.0	6
49	Transverse magnetic field polarity effects on the terahertz radiation from GaAs/AlGaAs modulation-doped heterostructures with varying AlGaAs spacer-layer thickness. Journal of Applied Physics, 2008, 104, 073506.	2.5	5
50	Photocarrier Transport and Carrier Recombination Efficiency in Vertically Aligned Si Nanowire Arrays Synthesized Via Metal-Assisted Chemical Etching. Applied Physics Express, 2013, 6, 082101.	2.4	5
51	Terahertz emission enhancement in semi-insulating gallium arsenide integrated with subwavelength one-dimensional metal line array. Optics Letters, 2016, 41, 4515.	3.3	5
52	Thickness dependence of the spintronic terahertz emission from Ni/Pt bilayer grown on MgO via electron beam deposition. Applied Physics Express, 2021, 14, 093001.	2.4	5
53	Raman spectroscopy ofin situannealed InAs/GaAs quantum dots. Journal of Applied Physics, 2004, 96, 1267-1269.	2.5	4
54	Blue-shifted and picosecond amplified UV emission from aqueous chemical grown ZnO microrods. Optical Materials, 2015, 48, 179-184.	3.6	4

#	Article	IF	CITATIONS
55	Porosity dependence of terahertz emission of porous silicon investigated using reflection geometry terahertz time-domain spectroscopy. Superlattices and Microstructures, 2016, 100, 892-899.	3.1	4
56	Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy. Japanese Journal of Applied Physics, 2017, 56, 111203.	1.5	4
57	Temperature dependence of THz emission and junction electric field of GaAs–AlGaAs modulation-doped heterostructures with different i-AlGaAs spacer layer thicknesses. Journal of Materials Science: Materials in Electronics, 2018, 29, 8760-8766.	2.2	4
58	Ultrafast carrier dynamics and THz conductivity in epitaxial-grown LT-GaAs on silicon for development of THz photoconductive antenna detectors. Journal Physics D: Applied Physics, 2020, 53, 095105.	2.8	4
59	Graphene transfer passivates GaAs. Applied Physics Letters, 2020, 117, .	3.3	4
60	Integrated optics spiral photoconductive antennas coupled with 1D and 2D micron-size terahertz-wavelength plasmonic metal arrays. Optical Materials Express, 2022, 12, 1617.	3.0	4
61	Below-bandgap excited, terahertz emission of optically pumped GaAs/AlGaAs multiple quantum wells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 334-337.	3.9	3
62	Observation of birefringence in BBO crystals in the terahertz regime. Journal of Crystal Growth, 2009, 311, 895-898.	1.5	3
63	Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region. Journal of the Optical Society of America B: Optical Physics, 2009, 26, A95.	2.1	3
64	Intense terahertz emission from molecular beam epitaxy-grown GaAs/GaSb(001). Journal of Applied Physics, 2012, 112, .	2.5	3
65	Deep level traps and the temperature behavior of the photoluminescence in GaAs/AlGaAs multiple quantum wells grown on off-axis and on-axis substrates. Journal of Luminescence, 2013, 143, 517-520.	3.1	3
66	Lens Coupler and Magnetic Field Terahertz Emission Enhancement in InSb and InAs under 1.55-µm Excitation. Japanese Journal of Applied Physics, 2013, 52, 032201.	1.5	3
67	Shell to core carrier-transfer in MBE-grown GaAs/AlGaAs core–shell nanowires on Si(100) substrates. Journal of Luminescence, 2014, 155, 27-31.	3.1	3
68	Enhanced terahertz emission from GaAs substrates deposited with aluminum nitride films caused by high interface electric fields. Applied Surface Science, 2014, 303, 241-244.	6.1	3
69	Temperature behavior of unstrained (GaAs/AlGaAs) and strained (InGaAs/GaAs) quantum well bandgaps. Optical and Quantum Electronics, 2015, 47, 3053-3063.	3.3	3
70	Interruption-assisted epitaxy of faceted p-InAs on buffered GaSb for terahertz emitters. Applied Physics Express, 2015, 8, 035501.	2.4	3
71	Defect-related temperature dependence of THz emission from GaAs/AlGaAs MQWs grown on off- and on-axis substrates. AIP Advances, 2017, 7, 125210.	1.3	3
72	Intense THz emission in high quality MBE-grown GaAs film with a thin n-doped buffer. Optical Materials Express, 2018, 8, 1463.	3.0	3

#	Article	IF	Citations
73	Efficacy of proposed 2DEG-based photoconductive antenna using magnetic bias-controlled carrier transport. Current Applied Physics, 2019, 19, 756-761.	2.4	3
74	A modulation-doped heterostructure-based terahertz photoconductive antenna emitter with recessed metal contacts. Scientific Reports, 2020, 10, 19926.	3.3	3
75	Trilayer low-temperature-grown GaAs terahertz emitter and detector device with doped buffer. Applied Physics Express, 2020, 13, 082012.	2.4	3
76	Interband dot-to-well transitions in InAsâ^•InGaAs dots in a well probed via photocurrent and electroluminescence spectroscopy. Applied Physics Letters, 2008, 92, .	3.3	2
77	Experimental and calculated terahertz spectra of naphthalene and 1,4-dihydroxynaphthalene in the 0.5 - 6 terahertz region. Journal of Physics: Conference Series, 2008, 112, 042073.	0.4	2
78	Terahertz Emission from GaAs Films on Si(100) and Si(111) Substrates Grown by Molecular Beam Epitaxy. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 418-425.	2.2	2
79	Influence of metal surface roughness on the phase velocity of terahertz waves propagating in parallel plate waveguides. , 2013, , .		2
80	Dynamics of Optically-Generated Carriers in Si (100) and Si (111) Substrate-Grown GaAs/AlGaAs Core-Shell Nanowires. Nanoscale Research Letters, 2015, 10, 1050.	5.7	2
81	Terahertz emission characteristics of GaMnAs dilute magnetic semiconductor under 650ÂmT external magnetic field. Current Applied Physics, 2017, 17, 522-526.	2.4	2
82	Luminescence and carrier dynamics in nanostructured silicon. Journal of Luminescence, 2017, 186, 312-317.	3.1	2
83	Tunneling at room temperature in GaAs/AlGaAs asymmetric coupled double quantum wells observed via time resolved photoluminescence spectroscopy. Superlattices and Microstructures, 2017, 109, 324-329.	3.1	2
84	Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 514-520.	2.2	2
85	Photo-carrier dynamics of MBE-grown GaAs on Silicon studied by optical-pump terahertz-probe. , 2018, , .		2
86	Terahertz transmission spectroscopy of soil minerals for geoarchaeological evaluation of sediments excavated from Pinagbayanan Batangas Philippines. Infrared Physics and Technology, 2020, 111, 103568.	2.9	2
87	Observation of enhanced terahertz emission in two-dimensional metal line arrays on GaAs surfaces. Japanese Journal of Applied Physics, 2020, 59, 070907.	1.5	2
88	Spray Pyrolysis Deposition of Alâ€Doped ZnO Thin Films for Potential Picosecond Extreme Ultraviolet Scintillator Applications. Physica Status Solidi (B): Basic Research, 2020, 257, 1900481.	1.5	2
89	Terahertz Emission Enhancement of Gallium-Arsenide-Based Photoconductive Antennas by Silicon Nanowire Coating. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 36-41.	3.1	2
90	Terahertz Emission from CuO Nanowires Synthesized Through Thermal Oxidation of Cu Foils. Science of Advanced Materials, 2017, 9, 193-198.	0.7	2

#	Article	IF	CITATIONS
91	Time response characteristics of an oxide-confined GaAsâ-AlGaAs resonant cavity-enhanced photodetector. Applied Physics Letters, 2004, 85, 3011-3013.	3.3	1
92	Zinc oxide single crystal as substrate for photoconductive antenna device generating radiation in the terahertz frequency region. , 0 , , .		1
93	Investigation of the terahertz emission characteristics of MBE-grown GaAs-based nanostructures. Optical Materials, 2010, 32, 776-779.	3.6	1
94	Efficient generation and electro-optic sampling detection of THz radiation using Cherenkov phase matching scheme. , 2011 , , .		1
95	Terahertz emission from Indium Oxide films grown on MgO substrates using sub-bandgap photon energy excitation. Optics Express, 2012, 20, 4518.	3.4	1
96	Detection of THz radiation by using GaAs in Cherenkov-phase-matched electro-optic sampling. , 2013, , .		1
97	Techniques of non-collinear electro-optic sampling for efficient detection of pulsed terahertz radiation. , 2013, , .		1
98	Frequency-resolved detection of broadband THz waves with Cherenkov-phase-matched heterodyne EO sampling. , 2014, , .		1
99	Terahertz emission from aluminum-doped ZnO–nGaAs heterostructure investigated using reflection-mode terahertz time-domain spectroscopy. Applied Physics Express, 2015, 8, 122101.	2.4	1
100	Epitaxial growth of p-InAs on GaSb with intense terahertz emission under $1.55-\hat{l}\frac{1}{4}$ m femtosecond laser excitation. Thin Solid Films, 2018, 648, 46-49.	1.8	1
101	Surface effect of n-GaAs cap on the THz emission in LT-GaAs. Journal of Materials Science: Materials in Electronics, 2018, 29, 12436-12442.	2.2	1
102	Temperature-dependent terahertz time-domain spectroscopy of 3D, 2D, and 0D semiconductor heterostructures. Journal of Materials Science: Materials in Electronics, 2020, 31, 6321-6327.	2.2	1
103	Terahertz emission increase in GaAs films exhibiting structural defects grown on Si (100) substrates using a two-layered LTG-GaAs buffer system. Journal of Materials Science: Materials in Electronics, 2021, 32, 13825-13836.	2.2	1
104	Effect of heteroepitaxial growth on LT-GaAs: ultrafast optical properties. Journal of Physics Condensed Matter, 2021, 33, 315704.	1.8	1
105	Terahertz generation in a thin GaAs slab in a tapered parallel plate waveguide by femtosecond laser excitation at 1560Ânm. Japanese Journal of Applied Physics, 2021, 60, 072009.	1.5	1
106	Creating terahertz pulses from titanium-doped lithium niobate-based strip waveguides with $1.55 \hat{A} \hat{l}^{1}/4 \text{m}$ light. Journal of Materials Science: Materials in Electronics, 2021, 32, 23164-23173.	2.2	1
107	Enhanced Terahertz Emission and Raman Signal from Silicon Nanopyramids. Science of Advanced Materials, 2017, 9, 214-219.	0.7	1
108	Indirect stress and air-cavity displacement measurement of MEMS tunable VCSELs via micro-Raman and micro-photoluminescence spectroscopy. Semiconductor Science and Technology, 2022, 37, 035013.	2.0	1

#	Article	IF	CITATIONS
109	Atomically Precise Delineation of As Antisite Defect States from Undoped Gallium Arsenide Host Lattice by Scanning Tunneling Microscopy and Spectroscopy Measurements and Density Functional Theory Calculations. Physica Status Solidi (B): Basic Research, 0, , 2100652.	1.5	1
110	Observation of blue shifted photoluminescence in stacked InAs/GaAs quantum dots., 0,,.		0
111	Uncharacteristic behaviour in low temperature of conductive polypyrrole detected by temperature-dependent terahertz transmission spectroscopy. , 0, , .		0
112	Modal analysis of Teflon photonic crystal fiber as a terahertz waveguide., 0,,.		0
113	Terahertz radiation in below-bandgap, optically pumped GaAs/AlGaAs multiple quantum wells in magnetic field., 2005,,.		0
114	Observation of below-bandgap excited terahertz emission in the action spectra of GaAs/AlGaAs multiple quantum wells. , 0, , .		0
115	Channeling terahertz (THz) radiation into a Teflon photonic crystal fiber waveguide by means of a lens duct in a THz pigtail assembly. , 0, , .		0
116	Observation of Four-fold Azimuthal Angle Dependence in the Terahertz Radiation Power of (100) p-lnAs. , 2006, , .		0
117	Terahertz - time domain spectroscopy of microstructured poly(methylmetacrylate) polymer fiber. , 2006, , .		0
118	Magnetic field orientation dependence of the terahertz radiation from GaAs/AlGaAs modulation-doped structures with varying AlGaAs spacer-layer thickness. , 2006, , .		0
119	Photoluminescence decay characteristics of an oxide-confined vertical-cavity surface-emitting laser. Applied Physics Letters, 2006, 88, 121122.	3.3	0
120	Terahertz radiation from (100) p-InAs under 1 tesla magnetic field due to surge current., 2006,,.		0
121	Low-loss single-mode THz waveguiding using CYTOP, a highly transparent plastic with potential as hybrid optics. , 2006, , .		0
122	Terahertz transmission spectroscopic analysis of mono- and di-substituted hydroxynaphthalenes in the 0.5- to 6- THz region using GaP THz wave generator. , 2006, , .		0
123	Nd ³⁺ :(La _{1-x} ,Bax)F _{3-x} as vacuum ultraviolet scintillator and new laser material. , 2007, , .		0
124	Azimuthal symmetry folding in the terahertz radiation power of (100) p-lnAs under 1 Tesla magnetic field. , 2007, , .		0
125	$Nd < \sup > 3 + : (La < \inf > 1 - x , Ba < \inf > x) F < \inf > 3 - x as Vacuum Ultraviolet Scintillator and New Laser Material. , 2007, , .$		0
126	Numerical calculations of the Frequency Spectra of naphthalene and 1,4-dihydroxynaphthalene in the 0.5-to 6 terahertz region., 2007,,.		0

#	Article	lF	CITATIONS
127	Planar terahertz waveguide using CYTOP; a highly transparent plastic feasible for hybrid optics applications. , 2007, , .		0
128	Nd3+: (La1-x, Bax)F3-x Grown via Micro-PD as New Vacuum Ultraviolet Scintillator and Potential Laser Material. , 2007, , .		0
129	Terahertz birefringence of β-BaB2O4 (BBO) crystal. , 2008, , .		0
130	Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm., 2009,,.		0
131	Enhanced terahertz emission from GaAs in MBE-grown InAs/GaAs quantum dot structures., 2009,,.		0
132	ZnO Scintillator Improved Temporal Response for XFEL Timing Observation. , 2010, , .		0
133	Numerical Approach for Determination of Cutback Length to Estimate Dispersion and Loss Parameters of Terahertz Waveguides. Japanese Journal of Applied Physics, 2010, 49, 072702.	1.5	0
134	Observation of Complex Optical Processes in ZnSe under Extreme Optical Excitation from a Kilojoule-Class Nd:Glass Laser. Japanese Journal of Applied Physics, 2010, 49, 062601.	1.5	0
135	Terahertz emission from indium oxide films on MgO substrates excited at a photon energy below the bandgap. , $2011, \ldots$		0
136	Efficient electro-optic sampling detection and generation of intense THz radiation via Cherenkov-type phase matching in a LiNbO <inf>3</inf> crystal coupled to a Si prism., 2011,,.		0
137	Intense terahertz emission from GaAs and InAs thin films grown on GaSb substrates. , 2011, , .		0
138	Enhancement of terahertz emission from InSb using a lens coupler and magnetic field., 2011,,.		0
139	Enhancement of THz EO sampling efficiency using waveguides. , 2012, , .		0
140	Cherenkov phase-matched EO sampling of terahertz pulses using heterodyne scheme. , 2012, , .		0
141	Electro-optic sampling of terahertz pulses using BaTiO<inf>3</inf> in non-collinear Cherenkov phase-matching scheme. , 2015 , , .		0
142	Enhanced terahertz emission from SI-GaAs with a sub-wavelength 1D metal array., 2015,,.		0
143	Increased terahertz emission from SI-GaAs deposited with sub-wavelength spacing metal line array. , 2015, , .		0
144	Cu ₂ ZnSnSe ₄ photovoltaic thin film: A potential large-area THz emitter. , 2015, , .		0

#	Article	ΙF	Citations
145	Non-collinear electro-optic sampling techniques for efficient detection of THz radiation. , 2015, , .		O
146	Cherenkov-type generation and detection of terahertz radiation in a GaAs with metal-coat structure. , 2016, , .		0
147	Sensitivity Improvement of Heterodyne Electro-Optic Sampling. , 2018, , .		0
148	Enhancement of THz EO Sampling Signal by Polarization Filtering. , 2018, , .		0
149	Terahertz Emission Enhancement of i-/n-Gallium Arsenide Thin Film on a Porous Silicon Distributed Bragg Reflector designed at 800nm. , 2018, , .		0
150	Photoluminescence and terahertz time-domain spectroscopy of MBE-grown single-layered InAs/GaAs quantum dots. , 2018, , .		0
151	Enhanced terahertz emission of a gallium arsenide thin film on a porous silicon distributed Bragg reflector designed at 800nm wavelength. Optical Materials, 2019, 92, 335-340.	3.6	0
152	High Sensitivity Heterodyne Electro-Optic Sampling with 1.5-µm Laser Source. , 2019, , .		0
153	Spintronic terahertz emission from Ni/Pt bilayer grown on MgO. Journal of Physics: Conference Series, 2021, 1943, 012035.	0.4	0
154	Interplay of Zn(OAc)2 concentration, morphology, and emission in hydrothermal-grown ZnO nanostructures. Journal of Crystal Growth, 2021, , 126339.	1.5	0
155	Improvement of the Photoluminescence Decay Response Characteristics of an Oxide-confined Vertical Cavity Surface Emitting Laser Probed by Femtosecond Laser Pulses. Springer Series in Optical Sciences, 2007, , 325-331.	0.7	0
156	Action Spectra of GaAs/AlGaAs Multiple Quantum Wells Exhibiting Terahertz Emission Peak at Excitation Energies Below the Bandgap. Springer Series in Optical Sciences, 2007, , 307-315.	0.7	0
157	Terahertz (THz) Pigtail Assembly Utilizing a Lens Duct for Effective Coupling of THz Radiation into Teflon Photonic Crystal Fiber Waveguide. Springer Series in Optical Sciences, 2007, , 293-299.	0.7	0
158	Terahertz Radiation from Photoconductive Switch Fabricated from a Zinc Oxide Single Crystal. Springer Series in Optical Sciences, 2007, , 301-306.	0.7	0
159	Optical Properties of Micro-Pulling Down Method Grown Nd3+:(La1-x,Bax)F3-x as Potential Vacuum Ultraviolet Laser Material and Scintillator. The Review of Laser Engineering, 2008, 36, 1303-1305.	0.0	0
160	Micro-pulling down method grown Ce:LiCAF as ultraviolet laser. , 2008, , .		0
161	Three-photon Lasing from ZnSe Excited by a kilojoule-class Nd:Glass Laser. , 2009, , .		0
162	Coherence Length Measurement for Ultra-short Laser Pulses Using Digital Holography and Statistical Fringe Analysis., 2014,, 247-250.		0

E S ESTACIO

#	Article	lF	CITATIONS
163	Enhanced terahertz emission of silicon nanowire-coated gallium arsenide photoconductive antenna. , 2020, , .		0
164	Effect of substrate material on LT-GaAs carrier dynamics at 800 nm., 2020,,.		0
165	Effect of Doped Buffer in Low-Temperature-Grown GaAs Terahertz Photoconductive Antenna Emitters and Detectors. , 2020, , .		0
166	Electro-Optic Sampling of Terahertz Pulses by using GaAs and Tapered Parallel Plate Waveguide. , 2020, , .		0
167	Tunneling dynamics and transport in MBE-grown GaAs/AlGaAs asymmetric double quantum wells investigated via photoluminescence and terahertz time-domain spectroscopy. Journal of Materials Science: Materials in Electronics, 2022, 33, 16126-16135.	2.2	0