Kevin C Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759647/publications.pdf

Version: 2024-02-01

114 papers 3,036 citations

30 h-index 206112 48 g-index

122 all docs $\begin{array}{c} 122 \\ \\ \text{docs citations} \end{array}$

times ranked

122

2973 citing authors

#	Article	IF	CITATIONS
1	Do fruit reflectance properties affect avian frugivory in New Zealand?. New Zealand Journal of Botany, 2022, 60, 319-329.	1.1	4
2	The paradox of island evolution. Journal of Biogeography, 2022, 49, 248-253.	3.0	5
3	A simple null model predicts the island rule. Ecology Letters, 2021, 24, 1646-1654.	6.4	12
4	Similar yet distinct distributional patterns characterize native and exotic plant species richness across northern New Zealand islands. Journal of Biogeography, 2021, 48, 1731-1745.	3.0	7
5	Primitive eusociality in a land plant?. Ecology, 2021, 102, e03373.	3.2	3
6	Gender dimorphism in the virulence of a dioecious mistletoe. International Journal for Parasitology, 2021, 51, 985-987.	3.1	1
7	On the selective advantage of coloniality in staghorn ferns (Platycerium bifurcatum, Polypodiaceae). Plant Signaling and Behavior, 2021, 16, 1961063.	2.4	0
8	Minimal models provide maximally parsimonious explanations. Ecology Letters, 2021, 24, 2524-2525.	6.4	1
9	Facultative hemiepiphytism as a recruitment strategy in smallâ€seeded tree species. Journal of Vegetation Science, 2020, 31, 1100-1111.	2.2	4
10	Spatial ecology and host diversity of three arboreal plants from Lord Howe Island. Australian Journal of Botany, 2020, 68, 458.	0.6	2
11	When an enemy of an enemy is not a friend: Tri-trophic interactions between kÄkÄ; puriri moths and makomako trees. New Zealand Journal of Ecology, 2020, 44, .	1.1	2
12	Reproductive Biology., 2019,, 109-130.		0
13	Loss of Fire-Adapted Traits. , 2019, , 156-170.		0
14	Size Changes. , 2019, , 131-155.		0
15	Differences in Defence. , 2019, , 43-84.		5
16	Differences in Dispersal. , 2019, , 85-108.		0
17	Plants obey (and disobey) the island rule. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17632-17634.	7.1	43
18	Building a better future for Diversity & Distributions. Diversity and Distributions, 2019, 25, 1010-1011.	4.1	1

#	Article	IF	Citations
19	Memory Performance Influences Male Reproductive Success in a Wild Bird. Current Biology, 2019, 29, 1498-1502.e3.	3.9	38
20	Parasite–offspring competition for female resources can explain male-biased parasitism in plants. Biology Letters, 2019, 15, 20180761.	2.3	5
21	Reply to Brian and Walker-Hale: Support for the island rule does not hide morphological disparity in insular plants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24931-24932.	7.1	0
22	Independent evolution of allometric traits: a test of the allometric constraint hypothesis in island vines. Biological Journal of the Linnean Society, 2019, 126, 203-211.	1.6	20
23	Phenotypic trait matching predicts the topology of an insular plant–bird pollination network. Integrative Zoology, 2018, 13, 339-347.	2.6	27
24	Time to abandon the loss of dispersal ability hypothesis in island plants: A comment on GarcÃaâ€Verdugo, Mairal, Monroy, Sajeva and Caujapé astells (2017). Journal of Biogeography, 2018, 45, 1219-1222.	3.0	32
25	An alternative water transport system in land plants. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180995.	2.6	19
26	Host defence predicts host specificity in a long-lived arboreal parasite. Evolutionary Ecology, 2017, 31, 37-50.	1.2	4
27	Adaptive advantages of appearance: predation, thermoregulation, and color of webbing built by New Zealand's largest moth. Ecology, 2017, 98, 1324-1333.	3.2	4
28	Male New Zealand robins (Petroica longipes) cater to their mate's desire when sharing food in the wild. Scientific Reports, 2017, 7, 896.	3.3	7
29	Convergent evolution of gigantism in the flora of an isolated archipelago. Evolutionary Ecology, 2017, 31, 741-752.	1.2	20
30	Disturbance and diversity in a continental archipelago: a mechanistic framework linking area, height, and exposure. Ecosphere, 2017, 8, e01957.	2.2	8
31	Potential aposematism in an insular tree species: are signals dishonest early in ontogeny?. Biological Journal of the Linnean Society, 2016, 118, 951-958.	1.6	21
32	Spinescence in the New Zealand flora: parallels with Australia. New Zealand Journal of Botany, 2016, 54, 273-289.	1.1	25
33	Radial distributions of air plants: a comparison between epiphytes and mistletoes. Ecology, 2016, 97, 819-825.	3.2	7
34	Native–exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology, 2016, 97, 2932-2938.	3.2	25
35	Size changes in island plants: independent trait evolution in <i>Alyxia ruscifolia</i> (Apocynaceae) on Lord Howe Island. Biological Journal of the Linnean Society, 2016, 119, 847-855.	1.6	31
36	Composition patterns and network structure of epiphyte–host interactions in Chilean and New Zealand temperate forests. New Zealand Journal of Botany, 2016, 54, 204-222.	1.1	24

#	Article	IF	CITATIONS
37	Apparency revisited. Entomologia Experimentalis Et Applicata, 2015, 157, 74-85.	1.4	42
38	The color of plant reproduction: macroecological trade-offs between biotic signaling and abiotic tolerance. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	16
39	The ontogeny of leaf spines: progressive versus retrogressive heteroblasty in two New Zealand plant species. New Zealand Journal of Botany, 2015, 53, 15-23.	1.1	12
40	Drivers of aggregation in a novel arboreal parasite: the influence of host size and infra-populations. International Journal for Parasitology, 2015, 45, 197-202.	3.1	5
41	Epiphyte community development throughout tree ontogeny: an island ontogeny framework. Journal of Vegetation Science, 2015, 26, 902-910.	2.2	49
42	Wild psychometrics: evidence for â€~general' cognitive performance inÂwild New Zealand robins, Petroica longipes. Animal Behaviour, 2015, 109, 101-111.	1.9	148
43	A Theory of Island Biogeography for Exotic Species. American Naturalist, 2015, 186, 441-451.	2.1	22
44	Sexual size dimorphism in island plants: the niche variation hypothesis and insular size changes. Oikos, 2015, 124, 717-723.	2.7	12
45	The repeated evolution of large seeds on islands. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140675.	2.6	52
46	At a loss for birds: insularity increases asymmetry in seedâ€dispersal networks. Global Ecology and Biogeography, 2014, 23, 385-394.	5.8	52
47	Are there general patterns in plant defence against megaherbivores?. Biological Journal of the Linnean Society, 2014, 111, 38-48.	1.6	52
48	Wild robins (Petroica longipes) respond to human gaze. Animal Cognition, 2014, 17, 1149-1156.	1.8	9
49	Comparative ecology of bird-pollinated and bird-dispersed New Zealand plants. New Zealand Journal of Botany, 2013, 51, 206-212.	1.1	9
50	What causes size coupling in fruit–frugivore interaction webs?. Ecology, 2013, 94, 295-300.	3.2	73
51	Chatter-call harmonics in the North Island Saddleback: do they play a role in ranging?. Emu, 2013, 113, 161-167.	0.6	0
52	Avian frugivory in <i>Miconia </i> (Melastomataceae): contrasting fruiting times promote habitat complementarity between savanna and palm swamp. Journal of Tropical Ecology, 2013, 29, 99-109.	1.1	25
53	Dominant network interactions are not correlated with resource availability: a case study using mistletoe host interactions. Oikos, 2013, 122, 889-895.	2.7	5
54	The Ability of North Island Robins to Discriminate between Humans Is Related to Their Behavioural Type. PLoS ONE, 2013, 8, e64487.	2.5	7

#	Article	IF	CITATIONS
55	Evaluating Frugivore-fruit Interactions Using Avian Eye Modelling. Tropical Life Sciences Research, 2013, 24, 31-50.	0.9	4
56	Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 2012, 15, 1129-1140.	1.8	94
57	Seed Dispersal: The Blind Bomb Maker. Current Biology, 2012, 22, R535-R537.	3.9	2
58	Memory for Multiple Cache Locations and Prey Quantities in a Food-Hoarding Songbird. Frontiers in Psychology, 2012, 3, 584.	2.1	13
59	Masting in a temperate tree: Evidence for environmental prediction?. Austral Ecology, 2012, 37, 175-182.	1.5	17
60	Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta (<i>Deinacrida) Tj ETQq0</i>	OOrgBT/	Overlock 10
61	Fish distributions along depth gradients of a sea mountain range conform to the midâ€domain effect. Ecography, 2012, 35, 557-565.	4.5	3
62	Predicting network topology of mistletoe–host interactions: do mistletoes really mimic their hosts?. Oikos, 2012, 121, 761-771.	2.7	30
63	Mistletoe macroecology: spatial patterns in species diversity and host use across Australia. Biological Journal of the Linnean Society, 2012, 106, 459-468.	1.6	16
64	Evolutionary size changes in plants of the southâ€west Pacific. Global Ecology and Biogeography, 2012, 21, 819-828.	5.8	41
65	A unified analysis of niche overlap incorporating data of different types. Methods in Ecology and Evolution, 2011, 2, 175-184.	5.2	106
66	Liana co-occurrence patterns in a temperate rainforest. Journal of Vegetation Science, 2011, 22, 868-877.	2.2	15
67	Body size determines rates of seed dispersal by giant king crickets. Population Ecology, 2011, 53, 73-80.	1.2	13
68	Allometry of Sexual Size Dimorphism in Dioecious Plants: Do Plants Obey Rensch's Rule?. American Naturalist, 2011, 178, 596-601.	2.1	19
69	Is crypsis a common defensive strategy in plants? Speculation on signal deception in the New Zealand flora. Plant Signaling and Behavior, 2010, 5, 9-13.	2.4	56
70	What weta want: colour preferences of a frugivorous insect. Arthropod-Plant Interactions, 2010, 4, 267-276.	1.1	16
71	Tree diversity on islands: assembly rules, passive sampling and the theory of island biogeography. Journal of Biogeography, 2010, 37, 1876-1883.	3.0	12
72	How arboreal are epiphytes? A null model for Benzing's classifications. New Zealand Journal of Botany, 2010, 48, 185-191.	1.1	19

#	Article	IF	CITATIONS
73	Hiding from the Ghost of Herbivory Past: Evidence for Crypsis in an Insular Tree Species. International Journal of Plant Sciences, 2010, 171, 828-833.	1.3	31
74	A hierarchical framework for investigating epiphyte assemblages: networks, metaâ€communities, and scale. Ecology, 2010, 91, 377-385.	3.2	79
75	Fine-scale food hoarding decisions in New Zealand Robins (Petroica australis): is inter-sexual competition important?. Journal of Ornithology, 2009, 150, 321-328.	1.1	7
76	Geographic patterns in fruit colour diversity: do leaves constrain the colour of fleshy fruits?. Oecologia, 2009, 159, 337-343.	2.0	65
77	Vertical gradients in leaf trait diversity in a New Zealand forest. Trees - Structure and Function, 2009, 23, 339-346.	1.9	12
78	Scaleâ€dependent trait correlations in a temperate tree community. Austral Ecology, 2009, 34, 670-677.	1.5	13
79	Plant extinction dynamics in an insular metacommunity. Oikos, 2009, 118, 191-198.	2.7	35
80	Fruit–frugivore interactions in two southern hemisphere forests: allometry, phylogeny and body size. Oikos, 2009, 118, 1901-1907.	2.7	15
81	Sampling Effects and Host Ranges in Australian Mistletoes. Biotropica, 2009, 41, 656-658.	1.6	11
82	The smallâ€island effect: fact or artefact?. Ecography, 2009, 32, 269-276.	4.5	56
83	Viewpoint: Wild number sense in brood parasitic Brownâ€headed Cowbirds. Ibis, 2009, 151, 775-777.	1.9	10
84	Ontogenetic colour changes in an insular tree species: signalling to extinct browsing birds?. New Phytologist, 2009, 184, 495-501.	7.3	111
85	Network properties of arboreal plants: Are epiphytes, mistletoes and lianas structured similarly?. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 41-52.	2.7	45
86	Seasonal variation in male-female competition, cooperation and selfish hoarding in a monogamous songbird. Behavioral Ecology and Sociobiology, 2008, 62, 1175-1183.	1.4	19
87	Global patterns in fruiting seasons. Global Ecology and Biogeography, 2008, 17, 648-657.	5.8	88
88	Meta-community structure of vascular epiphytes in a temperate rainforest. Botany, 2008, 86, 1252-1259.	1.0	23
89	Adaptive numerical competency in a food-hoarding songbird. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2373-2379.	2.6	105
90	Sexual differences in food re-caching by New Zealand robins Petroica australis. Journal of Avian Biology, 2007, 38, 394-398.	1.2	14

#	Article	IF	CITATIONS
91	Vocal ethology of the North Island kaka (<i>Nestor meridionalis septentrionalis (i). New Zealand Journal of Zoology, 2007, 34, 337-345.</i>	1.1	11
92	Network properties of an epiphyte metacommunity. Journal of Ecology, 2007, 95, 1142-1151.	4.0	82
93	Communityâ€wide character displacement in New Zealand skinks. Journal of Biogeography, 2007, 34, 2139-2147.	3.0	9
94	Is tree diversity different in the Southern Hemisphere?. Journal of Vegetation Science, 2007, 18, 307-312.	2.2	11
95	Cache spacing patterns and reciprocal cache theft in New Zealand robins. Animal Behaviour, 2007, 73, 1043-1049.	1.9	32
96	A morphological comparison of leaf heteroblasty between New Caledonia and New Zealand. New Zealand Journal of Botany, 2006, 44, 387-396.	1.1	25
97	A simple null model predicts fruit-frugivore interactions in a temperate rainforest. Oikos, 2006, 115, 427-432.	2.7	37
98	Dominance rank influences food hoarding in New Zealand Robins <i>Petroica australis</i> . Ibis, 2006, 148, 266-272.	1.9	15
99	Patterns in the assembly of an island plant community. Journal of Biogeography, 2006, 34, 760-768.	3.0	22
100	Seed Dispersal by Weta. Science, 2006, 311, 1575-1575.	12.6	56
101	Plastic heteroblasty in beach groundsel (<i>Senecio lautus</i>). New Zealand Journal of Botany, 2005, 43, 665-672.	1.1	18
102	Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecology, 2005, 30, 883-891.	1.5	52
103	Is there limiting similarity in the phenology of fleshy fruits?. Journal of Vegetation Science, 2005, 16, 617-624.	2.2	23
104	A multi-scale test for dispersal filters in an island plant community. Ecography, 2005, 28, 552-560.	4.5	28
105	Abundance-age-area relationships in an insular plant community. Folia Geobotanica, 2005, 40, 331-340.	0.9	5
106	Effects of bi-colored displays on avian fruit color preferences in a color polymorphic plant1. Journal of the Torrey Botanical Society, 2005, 132, 505-509.	0.3	9
107	Scale and macroecological patterns in seed dispersal mutualisms. Global Ecology and Biogeography, 2004, 13, 289-293.	5.8	92
108	Relationships between the demography and distribution of two bird-dispersed plants in an island archipelago. Journal of Biogeography, 2004, 31, 1935-1943.	3.0	14

#	Article	IF	CITATIONS
109	Patterns in specific leaf area and the structure of a temperate heath community. Diversity and Distributions, 2004, 10, 105-112.	4.1	39
110	Community-wide character displacement in barnacles: a new perspective for past observations. Ecology Letters, 2003, 7, 114-120.	6.4	24
111	Broad-scale reciprocity in an avian seed dispersal mutualism. Global Ecology and Biogeography, 2003, 12, 421-426.	5.8	19
112	Foliage color contrasts and adaptive fruit color variation in a bird-dispersed plant community. Oikos, 2002, 96, 463-469.	2.7	70
113	Seed dispersal facilitation and geographic consistency in bird-fruit abundance patterns. Global Ecology and Biogeography, 2002, 11, 253-259.	5.8	49
114	Functional traits explain non-native plant species richness and occupancy on northern New Zealand islands. Biological Invasions, 0 , 1 .	2.4	1