Shangfeng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4759362/publications.pdf

Version: 2024-02-01

		172457	168389
65	2,830	29	53
papers	citations	h-index	g-index
66	66	66	3732
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources, 2013, 231, 264-278.	7.8	756
2	One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cellsâ€"A review. Applied Catalysis B: Environmental, 2016, 199, 292-314.	20.2	160
3	A facile hydrothermal synthesis of MnO ₂ nanorod–reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. RSC Advances, 2015, 5, 88979-88988.	3.6	113
4	Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming. Fuel, 2018, 232, 672-683.	6.4	85
5	Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation. Energy, 2016, 96, 80-95.	8.8	75
6	Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2020, 260, 118031.	20.2	73
7	PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon, 2014, 79, 346-353.	10.3	71
8	Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceramics International, 2016, 42, 936-942.	4.8	70
9	A Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes with in situ Grown Pt Nanowires. Journal of Power Sources, 2010, 195, 289-292.	7.8	63
10	Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics, 2017, 23, 121-129.	2.4	62
11	A simple approach for PtNi–MWCNT hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 692-698.	10.3	59
12	Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Applied Catalysis B: Environmental, 2016, 187, 108-114.	20.2	59
13	The effect of materials on proton exchange membrane fuel cell electrode performance. Journal of Power Sources, 2011, 196, 9013-9017.	7.8	56
14	Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	55
15	Calcination Effects on the Properties of Gallium-Doped Zinc Oxide Powders. Journal of the American Ceramic Society, 2006, 89, 2440-2443.	3.8	52
16	Monodisperse ZnFe 2 O 4 nanospheres synthesized by a nonaqueous route for a highly slective low-ppm-level toluene gas sensor. Sensors and Actuators B: Chemical, 2017, 239, 1231-1236.	7.8	50
17	The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 4386-4393.	7.1	49
18	Ionic Liquid-Modified Microporous ZnCoNC-Based Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 2104-2110.	17.4	48

#	Article	IF	CITATIONS
19	First-principles study on ZnV2O6 and Zn2V2O7: Two new photoanode candidates for photoelectrochemical water oxidation. Ceramics International, 2018, 44, 6607-6613.	4.8	43
20	Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells. Applied Catalysis B: Environmental, 2015, 164, 389-395.	20.2	42
21	Catalyst loading for Pt-nanowire thin film electrodes in PEFCs. International Journal of Hydrogen Energy, 2012, 37, 17892-17898.	7.1	41
22	Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 2338-2348.	7.1	38
23	Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications. Engineering, 2021, 7, 33-49.	6.7	37
24	Template-free synthesis of NiO hollow microspheres covered with nanoflakes. Materials Letters, 2006, 60, 3601-3604.	2.6	36
25	Comparative Study of PtNi Nanowire Array Electrodes toward Oxygen Reduction Reaction by Half-Cell Measurement and PEMFC Test. ACS Applied Materials & Interfaces, 2020, 12, 42832-42841.	8.0	35
26	High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method. International Journal of Hydrogen Energy, 2015, 40, 3068-3074.	7.1	34
27	Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Scientific Reports, 2014, 4, 6439.	3.3	33
28	Ag-Functionalized CuWO ₄ /WO ₃ nanocomposites for solar water splitting. New Journal of Chemistry, 2019, 43, 2196-2203.	2.8	33
29	Pt-based nanowires as electrocatalysts in proton exchange fuel cells. International Journal of Low-Carbon Technologies, 2012, 7, 44-54.	2.6	31
30	Synthesis of Ba 0.3 Ca 0.7 Co 0.8 Fe 0.2 O 3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells. Electrochimica Acta, 2015, 178, 385-391.	5.2	30
31	From waste to waste treatment: Mesoporous magnetic NiFe2O4/ZnCuCr-layered double hydroxide composite for wastewater treatment. Journal of Alloys and Compounds, 2020, 819, 153053.	5.5	29
32	A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs). International Journal of Hydrogen Energy, 2013, 38, 12374-12378.	7.1	28
33	Cathode Design for Proton Exchange Membrane Fuel Cells in Automotive Applications. Automotive Innovation, 2021, 4, 144-164.	5.1	28
34	Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells. Frontiers of Chemical Science and Engineering, 2019, 13, 695-701.	4.4	27
35	The effect of active screen plasma treatment conditions on the growth and performance of Pt nanowire catalyst layer in DMFCs. International Journal of Hydrogen Energy, 2016, 41, 7622-7630.	7.1	26
36	Controlling Pt loading and carbon matrix thickness for a high performance Pt-nanowire catalyst layer in PEMFCs. International Journal of Hydrogen Energy, 2014, 39, 3397-3403.	7.1	23

#	Article	IF	Citations
37	Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). International Journal of Hydrogen Energy, 2018, 43, 20041-20049.	7.1	23
38	Visible-enhanced photocatalytic performance of CuWO ₄ /WO ₃ hetero-structures: incorporation of plasmonic Ag nanostructures. New Journal of Chemistry, 2018, 42, 11109-11116.	2.8	23
39	Measuring numberâ€concentrations of nanoparticles and viruses in liquids onâ€line. Journal of Chemical Technology and Biotechnology, 2010, 85, 1223-1228.	3.2	22
40	lonomer content effects on the electrocatalyst layer with in-situ grown Pt nanowires in PEMFCs. International Journal of Hydrogen Energy, 2014, 39, 3219-3225.	7.1	19
41	Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2020, 8, 11874-11883.	10.3	19
42	Evolution of gas diffusion layer structures for aligned Pt nanowire electrodes in PEMFC applications. Electrochimica Acta, 2018, 279, 99-107.	5.2	18
43	Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11457-11464.	8.0	18
44	A new measure of molecular attractions between nanoparticles near < i > $kT < li > adhesion$ energy. Nanotechnology, 2009, 20, 275701.	2.6	16
45	Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 5578-5587.	10.3	14
46	Matrix Material Study for <i>in situ</i> Grown Pt Nanowire Electrocatalyst Layer in Proton Exchange Membrane Fuel Cells (PEMFCs). Fuel Cells, 2015, 15, 449-455.	2.4	13
47	Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coatings, 2018, 8, 48.	2.6	13
48	In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells (PEMFCs). Journal of Energy Chemistry, 2013, 22, 477-483.	12.9	12
49	An experimental investigation of a micro-tubular SOFC membrane-separated liquid desiccant dehumidification and cooling tri-generation system. Applied Thermal Engineering, 2017, 120, 64-73.	6.0	11
50	Annealing Behaviour of Pt and PtNi Nanowires for Proton Exchange Membrane Fuel Cells. Materials, 2018, 11, 1473.	2.9	11
51	Large-scale preparation of porous ultrathin Ga-doped ZnO nanoneedles from 3D basic zinc carbonate superstructures. Nanotechnology, 2009, 20, 085611.	2.6	9
52	Large-scale preparation of needle-like zinc oxide with high electrical conductivity. Materials Letters, 2006, 60, 3133-3136.	2.6	8
53	Preparing Mesoporous Carbon and Silica with Rosin-Silica Composite Gel. Journal of Nanoscience and Nanotechnology, 2009, 9, 799-802.	0.9	8
54	Virus Concentration and Adhesion Measured by Laser Tracking. Journal of Adhesion, 2010, 86, 1029-1040.	3.0	5

#	Article	IF	CITATIONS
55	Materials for Polymer Electrolyte Membrane Fuel Cells (PEMFCs): Electrolyte Membrane, Gas Diffusion Layers, and Bipolar Plates. , 2017, , .		5
56	Modelling a Methane Fed Solid Oxide Fuel Cell With Anode Recirculation System. ECS Transactions, 2013, 57, 2831-2839.	0.5	3
57	Control system design for micro-tubular solid oxide fuel cells. International Journal of Low-Carbon Technologies, 2015, 10, 441-445.	2.6	3
58	Introduction to Materials for PEMFC Electrodes. , 2022, , 242-255.		3
59	Patterned Membranes for Proton Exchange Membrane Fuel Cells Working at Low Humidity. Polymers, 2021, 13, 1976.	4.5	2
60	Nanoporous materials for proton exchange membrane fuel cell applications. , 2020, , 441-476.		1
61	Liquid Fueled Fuel Cells., 2021, , .		1
62	One-Dimensional Nanostructured Catalysts for Hydrocarbon Oxidation Reaction., 2017,, 49-65.		0
63	Proton Exchange Membrane Fuel Cell Electrodes From One-Dimensional Nanostructures. , 2017, , 67-75.		O
64	Summary and Perspective. , 2017, , 77-79.		0
65	Materials for PEMFC Electrodes. , 2017, , .		O