
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4757008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403, 623-627.	27.8	4,490
2	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
3	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	12.6	3,761
4	Life with 6000 Genes. Science, 1996, 274, 546-567.	12.6	3,548
5	Finding Functional Features in <i>Saccharomyces</i> Genomes by Phylogenetic Footprinting. Science, 2003, 301, 71-76.	12.6	790
6	The Paf1 Complex Is Required for Histone H3 Methylation by COMPASS and Dot1p: Linking Transcriptional Elongation to Histone Methylation. Molecular Cell, 2003, 11, 721-729.	9.7	642
7	Function and Regulation of Yeast Hexose Transporters. Microbiology and Molecular Biology Reviews, 1999, 63, 554-569.	6.6	616
8	Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14539-14544.	7.1	568
9	COMPASS: A complex of proteins associated with a trithorax-related SET domain protein. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12902-12907.	7.1	534
10	Bre1, an E3 Ubiquitin Ligase Required for Recruitment and Substrate Selection of Rad6 at a Promoter. Molecular Cell, 2003, 11, 267-274.	9.7	489
11	Methylation of Histone H3 by COMPASS Requires Ubiquitination of Histone H2B by Rad6. Journal of Biological Chemistry, 2002, 277, 28368-28371.	3.4	466
12	Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12428-12432.	7.1	387
13	Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends in Genetics, 1999, 15, 29-33.	6.7	379
14	COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression. Journal of Biological Chemistry, 2002, 277, 10753-10755.	3.4	365
15	The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the <i>Saccharomyces sensu stricto </i> Genus. G3: Genes, Genomes, Genetics, 2011, 1, 11-25.	1.8	348
16	The Paf1 Complex Is Essential for Histone Monoubiquitination by the Rad6-Bre1 Complex, Which Signals for Histone Methylation by COMPASS and Dot1p. Journal of Biological Chemistry, 2003, 278, 34739-34742.	3.4	340
17	Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO Journal, 1998, 17, 2566-2573.	7.8	318
18	Surveying Saccharomyces Genomes to Identify Functional Elements by Comparative DNA Sequence Analysis. Genome Research, 2001, 11, 1175-1186.	5.5	218

#	Article	IF	CITATIONS
19	Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8597-8601.	7.1	215
20	Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1572-1577.	7.1	208
21	Comparative genomics of protoploid <i>Saccharomycetaceae</i> . Genome Research, 2009, 19, 1696-1709.	5.5	207
22	Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO Journal, 1997, 16, 5629-5638.	7.8	202
23	Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein. Nature, 1987, 328, 353-355.	27.8	182
24	The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Current Biology, 1999, 9, 1231-1241.	3.9	179
25	Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene, 1990, 96, 161-169.	2.2	175
26	Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose. Gene, 1989, 83, 57-64.	2.2	170
27	Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 2000, 18, 1283-1286.	17.5	168
28	Characterization of Three Related Glucose Repressors and Genes They Regulate in Saccharomyces cerevisiae. Genetics, 1998, 150, 1377-1391.	2.9	166
29	Linking Cell Cycle to Histone Modifications: SBF and H2B Monoubiquitination Machinery and Cell-Cycle Regulation of H3K79 Dimethylation. Molecular Cell, 2009, 35, 626-641.	9.7	159
30	The Bur1/Bur2 Complex Is Required for Histone H2B Monoubiquitination by Rad6/Bre1 and Histone Methylation by COMPASS. Molecular Cell, 2005, 20, 589-599.	9.7	155
31	Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature, 2010, 464, 54-58.	27.8	147
32	Regulatory Network Connecting Two Glucose Signal Transduction Pathways in Saccharomyces cerevisiae. Eukaryotic Cell, 2004, 3, 221-231.	3.4	145
33	Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature, 2003, 421, 848-852.	27.8	141
34	Benchmarking Next-Generation Transcriptome Sequencing for Functional and Evolutionary Genomics. Molecular Biology and Evolution, 2009, 26, 2731-2744.	8.9	140
35	CELL BIOLOGY: Whither Model Organism Research?. Science, 2005, 307, 1885-1886.	12.6	118
36	Specificity and Regulation of DNA Binding by the Yeast Glucose Transporter Gene Repressor Rgt1. Molecular and Cellular Biology, 2003, 23, 5208-5216.	2.3	116

#	Article	lF	CITATIONS
37	Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochemical Society Transactions, 2005, 33, 247-252.	3.4	109
38	A Glucose Sensor in Candida albicans. Eukaryotic Cell, 2006, 5, 1726-1737.	3.4	105
39	Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1476-1481.	7.1	101
40	Expression of the <i>SUC2</i> Gene of <i>Saccharomyces cerevisiae</i> is Induced by Low Levels of Glucose. Yeast, 1997, 13, 127-137.	1.7	100
41	Two Glucose-sensing Pathways Converge on Rgt1 to Regulate Expression of Glucose Transporter Genes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 26144-26149.	3.4	86
42	After the Duplication: Gene Loss and Adaptation in Saccharomyces Genomes. Genetics, 2006, 172, 863-872.	2.9	84
43	How the Rgt1 Transcription Factor of Saccharomyces cerevisiae Is Regulated by Glucose. Genetics, 2005, 169, 583-594.	2.9	82
44	Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 167-173.	3.4	81
45	Large-scale screening of yeast mutants for sensitivity to the IMP dehydrogenase inhibitor 6-azauracil. Yeast, 2004, 21, 241-248.	1.7	70
46	Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Gene, 1984, 32, 75-82.	2.2	64
47	Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9940-9945.	7.1	63
48	Set2-Catalyzed Methylation of Histone H3 Represses Basal Expression of GAL4 in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2003, 23, 5972-5978.	2.3	59
49	Regulation of sugar transport and metabolism by the <i>Candida albicans</i> Rgt1 transcriptional repressor. Yeast, 2007, 24, 847-860.	1.7	57
50	"Calling Cards―for DNA-Binding Proteins in Mammalian Cells. Genetics, 2012, 190, 941-949.	2.9	57
51	Genome sequencing: The complete code for a eukaryotic cell. Current Biology, 1996, 6, 500-503.	3.9	54
52	Associating protein activities with their genes: rapid identification of a gene encoding a methylglyoxal reductase in the yeastSaccharomyces cerevisiae. Yeast, 2003, 20, 545-554.	1.7	54
53	Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulationby glucose and chromatin structure. Nucleic Acids Research, 1999, 27, 1350-1358.	14.5	52
54	Gene chips: Array of hope for understanding gene regulation. Current Biology, 1998, 8, R171-R174.	3.9	49

#	Article	IF	CITATIONS
55	SUMOylation regulates the SNF1 protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17432-17437.	7.1	47
56	Specialized Sugar Sensing in Diverse Fungi. Current Biology, 2009, 19, 436-441.	3.9	46
57	Calling Cards enable multiplexed identification of the genomic targets of DNA-binding proteins. Genome Research, 2011, 21, 748-755.	5.5	45
58	The promise of functional genomics: completing the encyclopedia of a cell. Current Opinion in Microbiology, 2004, 7, 546-554.	5.1	44
59	Identifying DNA-Binding Sites and Analyzing DNA-Binding Domains Using a Yeast Selection System. Methods, 1993, 5, 125-137.	3.8	43
60	Unusual composition of a yeast chromosome arm is associated with its delayed replication. Genome Research, 2009, 19, 1710-1721.	5.5	43
61	Systematic analysis ofS. cerevisiae chromosome VIII genes. Yeast, 1999, 15, 1775-1796.	1.7	42
62	Gene disruption. Methods in Enzymology, 2002, 350, 290-315.	1.0	39
63	Cross-Talk between Carbon Metabolism and the DNA Damage Response in S.Âcerevisiae. Cell Reports, 2015, 12, 1865-1875.	6.4	38
64	A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16743-16748.	7.1	37
65	Calling cards for DNA-binding proteins. Genome Research, 2007, 17, 1202-1209.	5.5	34
66	Retrotransposon profiling of RNA polymerase III initiation sites. Genome Research, 2012, 22, 681-692.	5.5	33
67	The Std1 Activator of the Snf1/AMPK Kinase Controls Glucose Response in Yeast by a Regulated Protein Aggregation. Molecular Cell, 2017, 68, 1120-1133.e3.	9.7	33
68	A genetic method for defining DNA-binding domains: application to the nuclear receptor NGFI-B Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9186-9190.	7.1	30
69	A novel role for yeast casein kinases in glucose sensing and signaling. Molecular Biology of the Cell, 2016, 27, 3369-3375.	2.1	30
70	Isolation of yeast artificial chromosomes free of endogenous yeast chromosomes: construction of alternate hosts with defined karyotypic alterations Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11706-11710.	7.1	28
71	Asymmetric Signal Transduction through Paralogs That Comprise a Genetic Switch for Sugar Sensing in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 29635-29643.	3.4	26
72	The yeast genome: on the road to the Golden Age. Current Opinion in Genetics and Development, 2000, 10, 617-623.	3.3	25

#	Article	IF	CITATIONS
73	Global Proteomic Analysis of S. cerevisiae (GPS) to Identify Proteins Required for Histone Modifications. Methods in Enzymology, 2003, 377, 227-234.	1.0	25
74	Towards a complete understanding of how a simple eukaryotic cell works. Trends in Genetics, 1996, 12, 242-243.	6.7	15
75	'Calling Cards' method for high-throughput identification of targets of yeast DNA-binding proteins. Nature Protocols, 2008, 3, 1569-1577.	12.0	14
76	EVOLUTION: Heirlooms in the Attic. Science, 2003, 302, 997-999.	12.6	13
77	Genetic Analysis of Signal Generation by the Rgt2 Glucose Sensor of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2685-2696.	1.8	13
78	The Escherichia coli proB gene corrects the proline auxotrophy of Saccharomyces cerevisiae pro1 mutants. Molecular Genetics and Genomics, 1988, 212, 124-128.	2.4	12
79	Grass-roots genomics. Nature Genetics, 2000, 24, 5-6.	21.4	10
80	YeastBook: An Encyclopedia of the Reference Eukaryotic Cell. Genetics, 2011, 189, 683-684.	2.9	9
81	GENOMICS: A Crisis in Postgenomic Nomenclature. Science, 2002, 296, 671-672.	12.6	8
82	Support Science by Publishing in Scientific Society Journals. MBio, 2017, 8, .	4.1	7
83	A Glaring Paradox. Genetics, 2015, 199, 637-638.	2.9	6
84	A New Century of GENETICS. Genetics, 2016, 202, 1-2.	2.9	4
85	Presenting Genetics: Honoring the Past, Embracing the Future. Genetics, 2009, 183, 1203-1203.	2.9	2
86	Reclaiming Responsibility for Setting Standards. Genetics, 2009, 181, 355-356.	2.9	2
87	Joshua Lederberg on Bacterial Recombination. Genetics, 2016, 203, 613-614.	2.9	2
88	Opening up Peer Review. Genetics, 2020, 216, 619-620.	2.9	2
89	Renewing <scp>Genetics</scp> . Genetics, 2009, 183, 3-3.	2.9	1
90	Carrying the Torch. Genetics, 2009, 181, 1-2.	2.9	1

#	Article	IF	CITATIONS
91	Opening up Peer Review. Genetics, 2020, 216, 619-620.	2.9	1
92	G3, GENETICS, and the GSA: Two Journals, One Mission. G3: Genes, Genomes, Genetics, 2011, 1, 245-246.	1.8	0
93	Editorial Principles and Practices of <i>GENETICS</i> : A Peer-Edited Journal of the Genetics Society of America. Genetics, 2012, 192, 761-762.	2.9	Ο
94	Handing off the Torch. Genetics, 2020, 216, 825-826.	2.9	0