Janne Blichert-Toft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756866/publications.pdf

Version: 2024-02-01

209 papers

21,424 citations

70 h-index

11651

142

g-index

212 all docs 212 docs citations

times ranked

212

9041 citing authors

#	Article	IF	CITATIONS
1	The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 1997, 148, 243-258.	4.4	2,854
2	Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica Et Cosmochimica Acta, 1999, 63, 533-556.	3.9	1,263
3	Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 1999, 168, 79-99.	4.4	936
4	Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions To Mineralogy and Petrology, 1997, 127, 248-260.	3.1	737
5	A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 2002, 418, 949-952.	27.8	615
6	Foreâ€arc basalts and subduction initiation in the Izuâ€Boninâ€Mariana system. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	589
7	A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 2001, 190, 137-151.	4.4	534
8	Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science, 2005, 310, 1947-1950.	12.6	476
9	Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochimica Et Cosmochimica Acta, 2004, 68, 2725-2744.	3.9	474
10	Lu–hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochimica Et Cosmochimica Acta, 2000, 64, 3413-3432.	3.9	388
11	The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature, 1997, 387, 586-589.	27.8	355
12	Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28, 487.	4.4	309
13	The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 2002, 196, 197-212.	4.4	274
14	Hf Isotope Evidence for Pelagic Sediments in the Source of Hawaiian Basalts. Science, 1999, 285, 879-882.	12.6	269
15	Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana–Zimbabwe: Lithosphere vs Mantle Plume Contribution. Journal of Petrology, 2007, 48, 1043-1077.	2.8	266
16	Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 2014, 198-199, 1-13.	1.4	242
17	The Hf isotopic composition of zircon reference material 91500. Chemical Geology, 2008, 253, 252-257.	3.3	231
18	A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 2002, 195, 45-58.	4.4	225

#	Article	IF	Citations
19	Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochimica Et Cosmochimica Acta, 2014, 140, 553-576.	3.9	211
20	Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochimica Et Cosmochimica Acta, 2002, 66, 3481-3504.	3.9	195
21	Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters, 2008, 265, 686-702.	4.4	177
22	Hf–Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 2000, 181, 115-129.	4.4	172
23	147Sm–143Nd and 176Lu–176Hf in eucrites and the differentiation of the HED parent body. Earth and Planetary Science Letters, 2002, 204, 167-181.	4.4	171
24	142Nd evidence for early Earth differentiation. Earth and Planetary Science Letters, 2003, 214, 427-442.	4.4	169
25	Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth and Planetary Science Letters, 2012, 337-338, 211-223.	4.4	169
26	Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature, 2004, 432, 91-94.	27.8	165
27	Depleted mantle sources through time: Evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth and Planetary Science Letters, 2010, 297, 598-606.	4.4	161
28	The Lu–Hf isotope geochemistry of shergottites and the evolution of the Martian mantle–crust system. Earth and Planetary Science Letters, 1999, 173, 25-39.	4.4	153
29	Pb–Pb dating constraints on the accretion and cooling history of chondrites. Geochimica Et Cosmochimica Acta, 2007, 71, 1583-1604.	3.9	148
30	Synthetic zircon doped with hafnium and rare earth elements: A reference material for in situ hafnium isotope analysis. Chemical Geology, 2011, 286, 32-47.	3. 3	148
31	Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 1999, 283, 1303-1306.	12.6	146
32	Theistareykir revisited. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2. 5	142
33	The Nd and Hf isotopic evolution of the mantle through the Archean. results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochimica Et Cosmochimica Acta, 1999, 63, 3901-3914.	3.9	140
34	Upwelling of deep mantle material through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. Journal of Geophysical Research, 2002, 107, ECV 7-1-ECV 7-19.	3. 3	130
35	The age of SNC meteorites and the antiquity of the Martian surface. Earth and Planetary Science Letters, 2005, 240, 221-233.	4.4	123
36	Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	122

#	Article	IF	CITATIONS
37	Martian meteorite chronology and the evolution of the interior of Mars. Earth and Planetary Science Letters, 2009, 280, 285-295.	4.4	121
38	A Hf-Nd isotopic correlation in ferromanganese nodules. Geophysical Research Letters, 1998, 25, 3895-3898.	4.0	120
39	Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth and Planetary Science Letters, 2011, 312, 267-279.	4.4	120
40	On the Lu-Hf Isotope Geochemistry of Silicate Rocks. Geostandards and Geoanalytical Research, 2001, 25, 41-56.	3.1	117
41	The case for old basaltic shergottites. Earth and Planetary Science Letters, 2008, 266, 105-124.	4.4	117
42	\hat{I}^3 -ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochimica Et Cosmochimica Acta, 2006, 70, 1261-1270.	3.9	115
43	Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica Et Cosmochimica Acta, 2007, 71, 4365-4379.	3.9	114
44	Geochronological, geochemical, and Nd–Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research, 2004, 135, 133-147.	2.7	113
45	The spectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth and Planetary Science Letters, 2005, 238, 96-109.	4.4	112
46	Hf isotope compositions of komatiites. Earth and Planetary Science Letters, 1999, 171, 439-451.	4.4	110
47	Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology, 2003, 202, 115-138.	3.3	106
48	Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	106
49	A GEOLOGICAL PERSPECTIVE ON THE USE OF Pb ISOTOPES IN ARCHAEOMETRY. Archaeometry, 2012, 54, 853-867.	1.3	106
50	The origin of enriched mantle beneath São Miguel, Azores. Geochimica Et Cosmochimica Acta, 2007, 71, 219-240.	3.9	104
51	Isotopic portrayal of the Earth's upper mantle flow field. Nature, 2007, 447, 1069-1074.	27.8	104
52	Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus, 2013, 222, 44-52.	2.5	99
53	Nd–Sr–Hf–O isotope provinciality in the northernmost Arabian–Nubian Shield: implications for crustal evolution. Contributions To Mineralogy and Petrology, 2010, 160, 181-201.	3.1	98
54	Perspective on the Genesis of E-MORB from Chemical and Isotopic Heterogeneity at 9–10°N East Pacific Rise. Journal of Petrology, 2011, 52, 565-602.	2.8	96

#	Article	IF	CITATIONS
55	The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, 2012, 491, 96-100.	27.8	95
56	Implications of widespread high- \hat{l} - $\frac{1}{4}$ volcanism on the Arabian Plate for Afar mantle plume and lithosphere composition. Chemical Geology, 2003, 198, 47-61.	3.3	94
57	Inherited 142Nd anomalies in Eoarchean protoliths. Earth and Planetary Science Letters, 2013, 361, 50-57.	4.4	91
58	Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing?. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	89
59	Upper Mantle Pollution during Afar Plume–Continental Rift Interaction. Journal of Petrology, 2012, 53, 365-389.	2.8	88
60	Partial Melting of Mantle and Crustal Sources beneath South Karakorum, Pakistan: Implications for the Miocene Geodynamic Evolution of the India-Asia Convergence Zone. Journal of Petrology, 2009, 50, 427-449.	2.8	87
61	The coupled ¹⁸² Wâ€ ¹⁴² Nd record of early terrestrial mantle differentiation. Geochemistry, Geophysics, Geosystems, 2016, 17, 2168-2193.	2.5	87
62	Lead in ancient Rome's city waters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6594-6599.	7.1	86
63	Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): A tale of two small-scale mantle "blobs�. Earth and Planetary Science Letters, 2008, 265, 748-765.	4.4	85
64	Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle. Nature, 2000, 408, 701-704.	27.8	80
65	Aberrant youth: Chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9°-10°N. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	79
66	Petrology and geochemistry of the unbrecciated achondrite Northwest Africa 1240 (NWA 1240): an HED parent body impact melt. Geochimica Et Cosmochimica Acta, 2003, 67, 3959-3970.	3.9	76
67	The role of lithospheric gabbros on the composition of Galapagos lavas. Earth and Planetary Science Letters, 2007, 257, 391-406.	4.4	76
68	Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochimica Et Cosmochimica Acta, 2014, 133, 68-96.	3.9	75
69	Isotopic constraints on the cooling of the continental lithosphere. Earth and Planetary Science Letters, 2004, 223, 99-111.	4.4	74
70	U–Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South Africa. Earth and Planetary Science Letters, 2008, 267, 236-246.	4.4	73
71	Lithophile and siderophile element systematics of Earth's mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites. Geochimica Et Cosmochimica Acta, 2016, 180, 227-255.	3.9	73
72	Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios. Geochemistry, Geophysics, Geosystems, 2005, 6, .	2.5	70

#	Article	IF	CITATIONS
7 3	Timing of highâ€pressure metamorphism and exhumation of the eclogite typeâ€locality (Kupplerbrunn–Prickler Halt, Saualpe, southâ€eastern Austria): constraints from correlations of the Sm–Nd, Lu–Hf, U–Pb and Rb–Sr isotopic systems. Journal of Metamorphic Geology, 2008, 26, 561-581.	3.4	68
74	Complex Sm-Nd and Lu-Hf isotope systematics in metamorphic garnets from the Isua supracrustal belt, West Greenland. Geochimica Et Cosmochimica Acta, 2001, 65, 3177-3189.	3.9	67
75	Selectively contaminated magmas of the Tertiary East Greenland macrodike complex. Contributions To Mineralogy and Petrology, 1992, 110, 154-172.	3.1	66
76	Constraints on source-forming processes of West Greenland kimberlites inferred from Hf–Nd isotope systematics. Geochimica Et Cosmochimica Acta, 2007, 71, 2820-2836.	3.9	66
77	Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters, 2006, 241, 844-862.	4.4	65
78	The Solar System primordial lead. Earth and Planetary Science Letters, 2010, 300, 152-163.	4.4	65
79	Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth and Planetary Science Letters, 2013, 377-378, 324-335.	4.4	65
80	The Mesoproterozoic Zig-Zag Dal basalts and associated intrusions of eastern North Greenland: mantle plume?lithosphere interaction. Contributions To Mineralogy and Petrology, 2005, 149, 40-56.	3.1	64
81	Hf isotope compositions and HREE variations in off-craton garnet and spinel peridotite xenoliths from central Asia. Geochimica Et Cosmochimica Acta, 2005, 69, 2399-2418.	3.9	63
82	Shallow melting of <scp>MORB</scp> â€like mantle under hot continental lithosphere, <scp>C</scp> entral <scp>A</scp> natolia. Geochemistry, Geophysics, Geosystems, 2017, 18, 1866-1888.	2.5	63
83	Precambrian alkaline magmatism. Lithos, 1996, 37, 97-111.	1.4	62
84	Pb-Hf-Nd-Sr isotope variations along the Gal \tilde{A}_i pagos Spreading Center (101 \hat{A}° -83 \hat{A}° W): Constraints on the dispersal of the Gal \tilde{A}_i pagos mantle plume. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	62
85	The Prinsen af Wales Bjerge Formation Lavas, East Greenland: the Transition from Tholeiitic to Alkalic Magmatism during Palaeogene Continental Break-up. Journal of Petrology, 2003, 44, 279-304.	2.8	62
86	Lu–Hf and Ar–Ar chronometry supports extreme rate of subduction zone metamorphism deduced from geospeedometry. Tectonophysics, 2001, 342, 23-38.	2.2	61
87	Hf isotope geochemistry of the Galapagos Islands. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	59
88	Combined ^{147,146} Smâ€ ^{143,142} Nd constraints on the longevity and residence time of early terrestrial crust. Geochemistry, Geophysics, Geosystems, 2014, 15, 2329-2345.	2.5	58
89	Hf–Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle. Nature, 2000, 404, 488-490.	27.8	57
90	Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature, 2006, 440, 199-202.	27.8	57

#	Article	IF	Citations
91	Short-Lived Chemical Heterogeneities in the Archean Mantle with Implications for Mantle Convection. Science, 1994, 263, 1593-1596.	12.6	56
92	Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica Et Cosmochimica Acta, 2004, 68, 2699-2724.	3.9	56
93	One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters, 2008, 275, 285-295.	4.4	55
94	U–Pb geochronology and Hf–Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane. Earth and Planetary Science Letters, 2003, 208, 165-180.	4.4	53
95	Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth and Planetary Science Letters, 2004, 225, 89-103.	4.4	53
96	Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Gal \tilde{A}_i pagos hot spot tracks. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	52
97	Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (South-Eastern Alps). Journal of Geodynamics, 2003, 36, 563-590.	1.6	52
98	Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chemical Geology, 2004, 207, 261-275.	3.3	51
99	Ancient and Modern Subduction Zone Contributions to the Mantle Sources of Lavas from the Lassen Region of California Inferred from Lu-Hf Isotopic Systematics. Journal of Petrology, 2002, 43, 705-723.	2.8	50
100	A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 2008, 177, 606-618.	2.1	50
101	Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko'olau basalts. Contributions To Mineralogy and Petrology, 2006, 151, 297-312.	3.1	48
102	Geochemical characteristics of West Molokai shield―and postshield―tage lavas: Constraints on Hawaiian plume models. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	48
103	182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica Et Cosmochimica Acta, 2018, 228, 1-26.	3.9	48
104	Enriched components in the Hawaiian plume: Evidence from Kahoolawe Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	47
105	A unique lower mantle source for Southern Italy volcanics. Earth and Planetary Science Letters, 2007, 259, 227-238.	4.4	47
106	Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa. American Mineralogist, 2015, 100, 2396-2411.	1.9	47
107	Mixing of isotopic heterogeneities in the Mauna Kea plume conduit. Earth and Planetary Science Letters, 2009, 282, 190-200.	4.4	46
108	The early formation of the IVA iron meteorite parent body. Earth and Planetary Science Letters, 2010, 296, 469-480.	4.4	46

#	Article	IF	Citations
109	Largeâ€scale tectonic cycles in <scp>E</scp> urope revealed by distinct <scp>P</scp> b isotope provinces. Geochemistry, Geophysics, Geosystems, 2016, 17, 3854-3864.	2.5	46
110	Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochemistry, Geophysics, Geosystems, 2005, 6, .	2.5	45
111	Geochemical Constraints on the Role of Oceanic Lithosphere in Intra-Volcano Heterogeneity at West Maui, Hawaii. Journal of Petrology, 2004, 45, 1663-1687.	2.8	44
112	A legacy of Hadean silicate differentiation inferred from Hf isotopes in Eoarchean rocks of the Nuvvuagittuq supracrustal belt (Québec, Canada). Earth and Planetary Science Letters, 2013, 362, 171-181.	4.4	43
113	Hf isotopic compositions of the Hawaii Scientific Drilling Project Core and the source mineralogy of Hawaiian basalts. Geophysical Research Letters, 1999, 26, 935-938.	4.0	42
114	Zr isotope anomalies in chondrites and the presence of 92 Nb in the early solar system. Earth and Planetary Science Letters, 2000, 184, 75-81.	4.4	42
115	Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500yr before present. Earth and Planetary Science Letters, 2013, 375, 92-100.	4.4	42
116	The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth and Planetary Science Letters, 2018, 498, 38-53.	4.4	42
117	Europium isotopic variations in Allende CAIs and the nature of mass-dependent fractionation in the solar nebula. Geochimica Et Cosmochimica Acta, 2006, 70, 4287-4294.	3.9	41
118	Crustal Contamination of Mantle-derived Magmas within Piton de la Fournaise Volcano, Reunion Island. Journal of Petrology, 2009, 50, 661-684.	2.8	41
119	Lu–Hf isotope systematics of the Hadean–Eoarchean Acasta Gneiss Complex (Northwest Territories,) Tj ETQ	q1 _{31.9} 0.78،	4314 rgBT /C
120	Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30993-31001.	7.1	41
121	On the Time Scales of Magma Genesis, Melt Evolution, Crystal Growth Rates and Magma Degassing in the Erebus Volcano Magmatic System Using the 238U, 235U and 232Th Decay Series. Journal of Petrology, 2013, 54, 235-271.	2.8	39
122	Helium isotopic textures in Earth's upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 2048-2074.	2.5	39
123	Geochemical Constraints Provided by the Freetown Layered Complex (Sierra Leone) on the Origin of High-Ti Tholeiitic CAMP Magmas. Journal of Petrology, 2017, 58, 1811-1840.	2.8	39
124	The split fate of the early Earth, Mars, Venus, and Moon. Comptes Rendus - Geoscience, 2007, 339, 917-927.	1.2	38
125	Hafnium isotopes in basalts from the southern Mid-Atlantic Ridge from 40°S to 55°S: Discovery and Shona plume-ridge interactions and the role of recycled sediments. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-25.	2.5	37
126	Melting under the Colorado Plateau, USA. Geology, 2012, 40, 387-390.	4.4	36

#	Article	IF	Citations
127	Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth and Planetary Science Letters, 2013, 379, 146-157.	4.4	36
128	Geochemical investigation of a sediment core from the Trajan basin at Portus, the harbor of ancient Rome. Quaternary Science Reviews, 2014, 87, 34-45.	3.0	36
129	Implications of discordant U–Pb ages on Hf isotope studies of detrital zircons. Chemical Geology, 2014, 385, 17-25.	3.3	36
130	Volcanic evolution in the Gal \tilde{A}_i pagos: The dissected shield of Volcan Ecuador. Geochemistry, Geophysics, Geosystems, 2002, 3, 1 of 32-32 of 32.	2.5	34
131	Evidence for a broadly distributed Samoan-plume signature in the northern Lau and North Fiji Basins. Geochemistry, Geophysics, Geosystems, 2014, 15, 986-1008.	2.5	34
132	Understanding melt generation beneath the slow-spreading Kolbeinsey Ridge using 238U, 230Th, and 231Pa excesses. Geochimica Et Cosmochimica Acta, 2011, 75, 6300-6329.	3.9	33
133	Mantle dynamics and secular variations beneath the East African Rift: Insights from peridotite xenoliths (Mega, Ethiopia). Chemical Geology, 2014, 386, 49-58.	3.3	33
134	A lead isotope perspective on urban development in ancient Naples. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6148-6153.	7.1	33
135	Demise of a harbor: a geochemical chronicle from Ephesus. Journal of Archaeological Science, 2015, 53, 202-213.	2.4	32
136	Melting in the Hawaiian plume at 1-2 Ma as recorded at Maui Nui: The role of eclogite, peridotite, and source mixing. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	31
137	Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	31
138	Rome's urban history inferred from Pb-contaminated waters trapped in its ancient harbor basins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10059-10064.	7.1	31
139	Dynamics of oceanic iron prior to the Great Oxygenation Event. Earth and Planetary Science Letters, 2019, 506, 360-370.	4.4	31
140	Ultra-depleted 2.05ÂGa komatiites of Finnish Lapland: Products of grainy late accretion or core-mantle interaction?. Chemical Geology, 2020, 554, 119801.	3.3	31
141	Ancient carbonate sedimentary signature in the Hawaiian plume: Evidence from Mahukona volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	29
142	Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia. Geochimica Et Cosmochimica Acta, 2014, 139, 205-226.	3.9	29
143	A miner's perspective on Pb isotope provenances in the Western and Central Mediterranean. Journal of Archaeological Science, 2020, 121, 105194.	2.4	29
144	Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions To Mineralogy and Petrology, 2011, 162, 21-36.	3.1	28

#	Article	IF	Citations
145	Diet of ancient Egyptians inferred from stable isotope systematics. Journal of Archaeological Science, 2014, 46, 114-124.	2.4	28
146	An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean. Nature Geoscience, 2019, 12, 206-214.	12.9	28
147	Hf Isotope Evidence for a Miocene Change in the Kerguelen Mantle Plume Composition. Journal of Petrology, 2002, 43, 1327-1339.	2.8	27
148	Hafnium, neodymium, and strontium isotope and parent-daughter element systematics in basalts from the plume-ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	26
149	THE ELUSIVE ⁶⁰ Fe IN THE SOLAR NEBULA. Astrophysical Journal, 2011, 741, 71.	4.5	26
150	Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen). Tectonophysics, 2015, 650, 3-17.	2.2	25
151	Geochemical Earth Reference Model (GERM): description of the initiative. Chemical Geology, 1998, 145, 153-159.	3.3	23
152	"The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system― Earth and Planetary Science Letters, 1998, 154, 349.	4.4	23
153	Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle. Earth and Planetary Science Letters, 2013, 375, 196-208.	4.4	23
154	Geochemical evidence in the northeast Lau Basin for subduction of the Cookâ€Austral volcanic chain in the Tonga Trench. Geochemistry, Geophysics, Geosystems, 2016, 17, 1694-1724.	2.5	23
155	Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He. Chemical Geology, 2017, 455, 385-400.	3.3	23
156	Pikes Peak batholith (Colorado, USA) revisited: A SIMS and LA-ICP-MS study of zircon U–Pb ages combined with solution Hf isotopic compositions. Precambrian Research, 2016, 280, 179-194.	2.7	22
157	¹⁴⁷ Smâ€ ¹⁴³ Nd and ¹⁷⁶ Luâ€ ¹⁷⁶ Hf systematics of eucrite a angrite meteorites. Meteoritics and Planetary Science, 2015, 50, 1896-1911.	nd 1.6	20
158	Recent volcanic accretion at 9 [°] N–10 [°] N East Pacific Rise as resolved by combined geochemical and geological observations. Geochemistry, Geophysics, Geosystems, 2013, 14, 2547-2574.	2.5	19
159	From commodity to money: The rise of silver coinage around the Ancient Mediterranean (sixth–first) Tj ETQq1 1	0.78431 1.3	4 _I gBT /Ove
160	The distribution of geochemical heterogeneities in the source of Hawaiian shield lavas as revealed by a transect across the strike of the Loa and Kea spatial trends: East Molokai to West Molokai to Penguin Bank. Geochimica Et Cosmochimica Acta, 2014, 132, 214-237.	3.9	17
161	Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology, 2021, 564, 120028.	3.3	17
162	Pd–Ag chronology of volatile depletion, crystallization and shock in the Muonionalusta IVA iron meteorite and implications for its parent body. Earth and Planetary Science Letters, 2012, 351-352, 215-222.	4.4	15

#	Article	IF	CITATIONS
163	Hot and Heterogenous Highâ€ ³ He/ ⁴ He Components: New Constraints From Protoâ€kceland Plume Lavas From Baffin Island. Geochemistry, Geophysics, Geosystems, 2019, 20, 5939-5967.	2.5	15
164	Chapter 7.2 Mount Erebus. Geological Society Memoir, 2021, 55, 695-739.	1.7	15
165	Comment to "Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC–ICP–MS―by Baker et al Chemical Geology, 2005, 217, 171-174.	3.3	14
166	Geodynamic implications for zonal and meridional isotopic patterns across the northern $\langle scp \rangle L \langle scp \rangle au$ and $\langle scp \rangle N \langle scp \rangle r $	2.5	14
167	New findings of ancient Greek silver sources. Journal of Archaeological Science, 2022, 137, 105474.	2.4	14
168	Response to Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga". Science, 2006, 312, 1139b-1139b.	12.6	13
169	On edge melting under the Colorado Plateau margin. Geochemistry, Geophysics, Geosystems, 2016, 17, 2835-2854.	2.5	13
170	A geochemical and sedimentological perspective of the life cycle of Neapolis harbor (Naples, southern) Tj ETQq0) 0	Overlock 10
171	Sub-arc xenolith Fe-Li-Pb isotopes and textures tell tales of their journey through the mantle wedge and crust. Geology, 2018, 46, 947-950.	4.4	13
172	Extraction of Pb and Zn from crude oil for high-precision isotopic analysis by MC-ICP-MS. Chemical Geology, 2019, 511, 112-122.	3.3	13
173	The komatiite testimony to ancient mantle heterogeneity. Chemical Geology, 2022, 594, 120776.	3.3	13
174	Silver isotope and volatile trace element systematics in galena samples from the Iberian Peninsula and the quest for silver sources of Roman coinage. Geology, 2022, 50, 422-426.	4.4	13
175	Hafnium isotope evidence for early-Proterozoic volcanic arc reworking in the Skellefte district (northern Sweden) and implications for the Svecofennian orogen. Precambrian Research, 2014, 252, 39-52.	2.7	11
176	Isotopic and elemental evidence for Scabland Flood sediments offshore Vancouver Island. Quaternary Science Reviews, 2016, 139, 129-137.	3.0	11
177	The significance of galena Pb model ages and the formation of large Pb-Zn sedimentary deposits. Chemical Geology, 2021, 583, 120444.	3.3	11
178	Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island. Lithos, 2016, 262, 561-575.	1.4	10
179	Elemental and isotopic perspectives on the impact of arbuscular mycorrhizal and ectomycorrhizal fungi on mineral weathering across imposed geologic gradients. Chemical Geology, 2016, 445, 164-171.	3.3	10
180	Lead isotopes as tracers of crude oil migration within deep crustal fluid systems. Earth and Planetary Science Letters, 2019, 525, 115747.	4.4	10

#	Article	IF	CITATIONS
181	Metal provenance of Iron Age Hacksilber hoards in the southern Levant. Journal of Archaeological Science, 2021, 134, 105472.	2.4	10
182	Siderophile elements in IVA irons and the compaction of their parent asteroidal core. Earth and Planetary Science Letters, 2013, 362, 122-129.	4.4	9
183	Similarities between the Th/U map of the western US crystalline basement and the seismic properties of the underlying lithosphere. Earth and Planetary Science Letters, 2014, 391, 243-254.	4.4	9
184	Chemical archeoceanography. Chemical Geology, 2020, 548, 119625.	3.3	9
185	Economic resilience of Carthage during the Punic Wars: Insights from sediments of the Medjerda delta around Utica (Tunisia). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9764-9769.	7.1	8
186	Sr, Nd, Hf and Pb isotope systematics of postshield-stage lavas at Kahoolawe, Hawaii. Chemical Geology, 2013, 360-361, 159-172.	3.3	7
187	A critical evaluation of copper isotopes in Precambrian Iron Formations as a paleoceanographic proxy. Geochimica Et Cosmochimica Acta, 2019, 264, 130-140.	3.9	7
188	Origin and fate of the greatest accumulation of silver in ancient history. Archaeological and Anthropological Sciences, 2022, 14 , 1 .	1.8	7
189	A reappraisal of the evolution of the palaeo-Pacific margin of Gondwana from the Pb and Os isotope systematics of igneous rocks from the southern Adelaide fold belt, South Australia. Gondwana Research, 2017, 45, 152-162.	6.0	6
190	Th/U variability in Allende chondrules. Geochimica Et Cosmochimica Acta, 2020, 280, 378-394.	3.9	6
191	The lunar neutron energy spectrum inferred from the isotope compositions of rare-earth elements and hafnium in Apollo samples. Earth and Planetary Science Letters, 2015, 429, 147-156.	4.4	5
192	The terrestrial craddle of life. , 2009, , .		4
193	Age and mantle sources of Quaternary basalts associated with "leaky―transform faults of the migrating Anatolia-Arabia-Africa triple junction. , 2021, 17, 69-94.		4
194	Comment on "Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals―by Zhou et al Earth and Planetary Science Letters, 2014, 385, 216-217.	4.4	3
195	Distinguishing Volcanic Contributions to the Overlapping Samoan and Cook-Austral Hotspot Tracks. Journal of Petrology, 2022, 63, .	2.8	3
196	Reply to the Comment by Igor M. Villa, Balz S. Kamber, and Thomas F. NÃ໘ler on "The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa†Geochimica Et Cosmochimica Acta, 2001, 65, 2023-2025.	3.9	2
197	Correction to "Volcanic evolution in the Galápagos: The dissected shield of Volcan Ecuador―by D. Geist, W. M. White, F. Albarede, K. Harpp, R. Reynolds, J. Blichert-Toft, and M. Kurz. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	2
198	Corrigendum to 'Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Petrogenesis of Basaltic Andesites at Tofua Volcano' and 'Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Rapid Petrogenesis of Dacites at Fonualei Volcano'. Journal of Petrology, 2015, 56, 641-644.	2.8	2

#	Article	IF	CITATIONS
199	Hafnium. Encyclopedia of Earth Sciences Series, 2016, , 1-3.	0.1	1
200	Model for ancient Greek and Roman coinage production. Journal of Archaeological Science, 2021, 131, 105406.	2.4	1
201	Appreciation of peer reviewers for 2014. Geochemistry, Geophysics, Geosystems, 2015, 16, 2473-2479.	2.5	0
202	Hafnium Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	0
203	Hafnium. Encyclopedia of Earth Sciences Series, 2018, , 629-631.	0.1	O
204	Thank You to Our 2018 Peer Reviewers. Geochemistry, Geophysics, Geosystems, 2019, 20, 4593-4598.	2.5	0
205	The Assean Lake Complex. , 2019, , 703-722.		0
206	Thank You to Our 2019 Reviewers. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009007.	2.5	0
207	Thank You to Our 2020 Reviewers. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009697.	2.5	O
208	Hafnium Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 631-636.	0.1	0
209	Thank You to Our 2021 Reviewers. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	O