Stephen L Hauser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. New England Journal of Medicine, 2008, 358, 676-688.	27.0	2,107
2	Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 209-220.	27.0	1,324
3	Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 221-234.	27.0	1,322
4	ldentification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Medicine, 1999, 5, 170-175.	30.7	826
5	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
6	Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10713-10718.	7.1	709
7	The Neurobiology of Multiple Sclerosis: Genes, Inflammation, and Neurodegeneration. Neuron, 2006, 52, 61-76.	8.1	666
8	Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet, The, 2011, 378, 1779-1787.	13.7	636
9	Abnormal Bâ€cell cytokine responses a trigger of Tâ€cell–mediated disease in MS?. Annals of Neurology, 2010, 67, 452-461.	5.3	428
10	Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet, The, 2017, 390, 2481-2489.	13.7	377
11	Treatment of Multiple Sclerosis: A Review. American Journal of Medicine, 2020, 133, 1380-1390.e2.	1.5	374
12	Ofatumumab versus Teriflunomide in Multiple Sclerosis. New England Journal of Medicine, 2020, 383, 546-557.	27.0	358
13	Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Annals of Neurology, 1986, 19, 578-587.	5.3	355
14	Longâ€ŧerm evolution of multiple sclerosis disability in the treatment era. Annals of Neurology, 2016, 80, 499-510.	5.3	331
15	Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47, 1107-1113.	21.4	312
16	High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nature Genetics, 2015, 47, 172-179.	21.4	280
17	Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: A case for antigen-specific antibody mediation. Annals of Neurology, 1999, 46, 144-160.	5.3	273
18	Silent progression in disease activity–free relapsing multiple sclerosis. Annals of Neurology, 2019, 85, 653-666.	5.3	265

#	Article	IF	CITATIONS
19	Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurology, 2020, 77, 1132.	9.0	245
20	Rituximab Efficiently Depletes Increased CD20-Expressing T Cells in Multiple Sclerosis Patients. Journal of Immunology, 2014, 193, 580-586.	0.8	223
21	B cell exchange across the blood-brain barrier in multiple sclerosis. Journal of Clinical Investigation, 2012, 122, 4533-4543.	8.2	211
22	Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Science Translational Medicine, 2014, 6, 248ra106.	12.4	194
23	Bâ€cell Therapy for Multiple Sclerosis: Entering an era. Annals of Neurology, 2018, 83, 13-26.	5.3	179
24	Thalamic atrophy in multiple sclerosis: A magnetic resonance imaging marker of neurodegeneration throughout disease. Annals of Neurology, 2018, 83, 223-234.	5.3	169
25	Multiple sclerosis: Prospects and promise. Annals of Neurology, 2013, 74, 317-327.	5.3	165
26	Rituximab before and during pregnancy. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e453.	6.0	159
27	Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Annals of Neurology, 2014, 76, 568-580.	5.3	158
28	Infliximab for the treatment of CNS sarcoidosis. Neurology, 2017, 89, 2092-2100.	1.1	151
29	Ocrelizumab and Other CD20+ B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics, 2017, 14, 835-841.	4.4	141
30	Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature, 2019, 572, 481-487.	27.8	141
31	Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: A new model for multiple sclerosis. Annals of Neurology, 1995, 37, 519-530.	5.3	132
32	Gut microbiota–specific IgA ⁺ B cells traffic to the CNS in active multiple sclerosis. Science Immunology, 2020, 5, .	11.9	132
33	Association Between Serum Neurofilament Light Chain Levels and Long-term Disease Course Among Patients With Multiple Sclerosis Followed up for 12 Years. JAMA Neurology, 2019, 76, 1359.	9.0	129
34	Role of B Cells in Multiple Sclerosis and Related Disorders. Annals of Neurology, 2021, 89, 13-23.	5.3	123
35	Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis Journal, 2019, 25, 1915-1925.	3.0	122
36	A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22932-22943.	7.1	119

#	Article	IF	CITATIONS
37	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
38	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	12.6	113
39	Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11839-11844.	7.1	105
40	Immune responses against the myelin/oligodendrocyte glycoprotein in experimental autoimmune demyelination. Journal of Clinical Immunology, 2001, 21, 155-170.	3.8	99
41	Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2020, 19, 998-1009.	10.2	98
42	The Charcot Lecture Beating MS: A story of B cells, with twists and turns. Multiple Sclerosis Journal, 2015, 21, 8-21.	3.0	91
43	Immunoregulatory T-cells and lymphocytotoxic antibodies in active multiple sclerosis: Weekly analysis over a six-month period. Annals of Neurology, 1983, 13, 418-425.	5.3	90
44	Adherence and Satisfaction of Smartphone- and Smartwatch-Based Remote Active Testing and Passive Monitoring in People With Multiple Sclerosis: Nonrandomized Interventional Feasibility Study. Journal of Medical Internet Research, 2019, 21, e14863.	4.3	90
45	Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight, 2017, 2, .	5.0	84
46	Experimental allergic encephalomyelitis in the New World monkeyCallithrix jacchus. Immunological Reviews, 2001, 183, 159-172.	6.0	81
47	Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Human Molecular Genetics, 2013, 22, 4194-4205.	2.9	81
48	Five years of ocrelizumab in relapsing multiple sclerosis. Neurology, 2020, 95, e1854-e1867.	1.1	81
49	Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurology, 2015, 72, 897.	9.0	78
50	Creation of a model for multiple sclerosis in Callithrix jacchus marmosets. Journal of Molecular Medicine, 1997, 75, 187-197.	3.9	76
51	Safety of Ocrelizumab in Patients With Relapsing and Primary Progressive Multiple Sclerosis. Neurology, 2021, 97, e1546-e1559.	1.1	75
52	In multiple sclerosis, oligoclonal bands connect to peripheral Bâ€cell responses. Annals of Neurology, 2014, 75, 266-276.	5.3	73
53	Anti-CD20 therapy depletes activated myelin-specific CD8 ⁺ T cells in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25800-25807.	7.1	71
54	Ocrelizumab infusion experience in patients with relapsing and primary progressive multiple sclerosis: Results from the phase 3 randomized OPERA I, OPERA II, and ORATORIO studies. Multiple Sclerosis and Related Disorders, 2019, 30, 236-243.	2.0	69

#	Article	IF	CITATIONS
55	PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nature Genetics, 2001, 29, 23-24.	21.4	65
56	Body mass index, but not vitamin D status, is associated with brain volume change in MS. Neurology, 2018, 91, e2256-e2264.	1.1	65
57	Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurology, 2016, 73, 795.	9.0	64
58	Ocrelizumab efficacy in subgroups of patients with relapsing multiple sclerosis. Journal of Neurology, 2019, 266, 1182-1193.	3.6	61
59	Childhood multiple sclerosis: Clinical features and demonstration of changes in T cell subsets with disease activity. Annals of Neurology, 1982, 11, 463-468.	5.3	60
60	Mitochondrial DNA sequence variation in multiple sclerosis. Neurology, 2015, 85, 325-330.	1.1	60
61	An ImmunoChip study of multiple sclerosis risk in African Americans. Brain, 2015, 138, 1518-1530.	7.6	60
62	B-Cell Therapies in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a032037.	6.2	60
63	The T-cell response to myelin basic protein in familial multiple sclerosis: Diversity of fine specificity, restricting elements, and T-cell receptor usage. Annals of Neurology, 1993, 34, 385-393.	5.3	59
64	A specific amino acid motif of <i>HLA-DRB1</i> mediates risk and interacts with smoking history in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7419-7424.	7.1	58
65	Magnetic Resonance Spectroscopy Markers of Disease Progression in Multiple Sclerosis. JAMA Neurology, 2014, 71, 840.	9.0	57
66	Contribution of normal aging to brain atrophy in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	57
67	Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. European Journal of Immunology, 2001, 31, 2942-2950.	2.9	54
68	Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study. PLoS ONE, 2015, 10, e0118576.	2.5	54
69	Precision medicine in chronic disease management: The multiple sclerosis <scp>B</scp> io <scp>S</scp> creen. Annals of Neurology, 2014, 76, 633-642.	5.3	53
70	Increased levels of neuronal thread protein in cerebrospinal fluid of patients with Alzheimer's disease. Annals of Neurology, 1992, 32, 733-742.	5.3	52
71	A smartphone sensor-based digital outcome assessment of multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 654-664.	3.0	51
72	Genetics of Demyelinating Diseases. Brain Pathology, 1996, 6, 289-302.	4.1	50

#	Article	IF	CITATIONS
73	Ocrelizumab in Primary Progressive and Relapsing Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 1692-1694.	27.0	50
74	Toward a low-cost, in-home, telemedicine-enabled assessment of disability in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1526-1534.	3.0	49
75	Autoimmunity following viral infection: demonstration of monoclonal antibodies against normal tissue following infection of mice with reovirus and demonstration of shared antigenicity between virus and lymphocytes. European Journal of Immunology, 1984, 14, 561-565.	2.9	43
76	Evaluation of no evidence of progression or active disease (NEPAD) in patients with primary progressive multiple sclerosis in the ORATORIO trial. Annals of Neurology, 2018, 84, 527-536.	5.3	42
77	Ovarian aging is associated with gray matter volume and disability in women with MS. Neurology, 2018, 90, e254-e260.	1.1	41
78	Telomere Length Is Associated with Disability Progression in Multiple Sclerosis. Annals of Neurology, 2019, 86, 671-682.	5.3	41
79	Tob1 plays a critical role in the activation of encephalitogenic T cells in CNS autoimmunity. Journal of Experimental Medicine, 2013, 210, 1301-1309.	8.5	40
80	Spinal Cord Atrophy Predicts Progressive Disease in Relapsing Multiple Sclerosis. Annals of Neurology, 2022, 91, 268-281.	5.3	39
81	Onset of clinical and MRI efficacy of ocrelizumab in relapsing multiple sclerosis. Neurology, 2019, 93, e1778-e1786.	1.1	37
82	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
83	Linkage and association analysis of chromosome 19q13 in multiple sclerosis. Neurogenetics, 2001, 3, 195-201.	1.4	33
84	No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731876064.	1.0	32
85	Intersubject Variability and Normalization Strategies for Spinal Cord Total Crossâ€ S ectional and Gray Matter Areas. Journal of Neuroimaging, 2020, 30, 110-118.	2.0	31
86	2D phaseâ€sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times. Journal of Magnetic Resonance Imaging, 2015, 42, 698-708.	3.4	29
87	Efficacy and safety of ofatumumab in recently diagnosed, treatment-naive patients with multiple sclerosis: Results from ASCLEPIOS I and II. Multiple Sclerosis Journal, 2022, 28, 1562-1575.	3.0	25
88	Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Multiple Sclerosis Journal, 2022, 28, 1576-1590.	3.0	24
89	A Precision Medicine Tool for Patients With Multiple Sclerosis (the Open MS BioScreen): Human-Centered Design and Development. Journal of Medical Internet Research, 2020, 22, e15605.	4.3	23
90	Onset of secondary progressive <scp>MS</scp> after longâ€ŧerm rituximab therapy – a case report. Annals of Clinical and Translational Neurology, 2017, 4, 46-52.	3.7	22

#	Article	IF	CITATIONS
91	Longitudinally persistent cerebrospinal fluid B-cells can resist treatment in multiple sclerosis. JCI Insight, 2019, 4, .	5.0	22
92	Harnessing electronic medical records to advance research on multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 408-418.	3.0	21
93	SUMMIT (Serially Unified Multicenter Multiple Sclerosis Investigation): creating a repository of deeply phenotyped contemporary multiple sclerosis cohorts. Multiple Sclerosis Journal, 2018, 24, 1485-1498.	3.0	19
94	Aberrant STAT phosphorylation signaling in peripheral blood mononuclear cells from multiple sclerosis patients. Journal of Neuroinflammation, 2018, 15, 72.	7.2	18
95	pRNFL as a marker of disability worsening in the medium/long term in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e533.	6.0	18
96	Antigen Presentation by B Cells in Multiple Sclerosis. New England Journal of Medicine, 2021, 384, 378-381.	27.0	18
97	Prognostic Value of Serum Neurofilament Light Chain for Disease Activity and Worsening in Patients With Relapsing Multiple Sclerosis: Results From the Phase 3 ASCLEPIOS I and II Trials. Frontiers in Immunology, 2022, 13, 852563.	4.8	18
98	Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain, 2021, 144, 450-461.	7.6	16
99	Multiple sclerosis: two decades of progress. Lancet Neurology, The, 2022, 21, 211-214.	10.2	16
100	Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain, 2023, 146, 645-656.	7.6	15
101	Ataxin-1 regulates B cell function and the severity of autoimmune experimental encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23742-23750.	7.1	14
102	Neurite Orientation Dispersion and Density Imaging for Assessing Acute Inflammation and Lesion Evolution in MS. American Journal of Neuroradiology, 2020, 41, 2219-2226.	2.4	14
103	Retinal <scp>INL</scp> Thickness in Multiple Sclerosis: A Mere Marker of Neurodegeneration?. Annals of Neurology, 2021, 89, 192-193.	5.3	14
104	Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
105	Clonally restricted B cells in peripheral blood of multiple sclerosis patients: Kappa/lambda staining patterns. Annals of Neurology, 1982, 11, 408-412.	5.3	11
106	Sex-specific Tau methylation patterns and synaptic transcriptional alterations are associated with neural vulnerability during chronic neuroinflammation. Journal of Autoimmunity, 2019, 101, 56-69.	6.5	11
107	Brain MRI Predicts Worsening Multiple Sclerosis Disability over 5 Years in the SUMMIT Study. Journal of Neuroimaging, 2020, 30, 212-218.	2.0	11
108	Electronic Health Record Technology Designed for the Clinical Encounter. Neurology: Clinical Practice, 2021, 11, 318-326.	1.6	11

#	Article	IF	CITATIONS
109	Serum antibodies to phosphatidylcholine in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e765.	6.0	10
110	Characterization of the response to myelin basic protein in a non human primate model for multiple sclerosis. European Journal of Immunology, 2001, 31, 474-479.	2.9	9
111	Diagnosing multiple sclerosis: art and science. Lancet Neurology, The, 2018, 17, 109-111.	10.2	9
112	An electronic, unsupervised patient-reported Expanded Disability Status Scale for multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1432-1441.	3.0	9
113	Progress in Multiple Sclerosis Research. JAMA - Journal of the American Medical Association, 2020, 324, 841.	7.4	9
114	Risk of requiring a walking aid after 6.5Âyears of ocrelizumab treatment in patients with relapsing multiple sclerosis: Data from the OPERA I and OPERA II trials. European Journal of Neurology, 2022, 29, 1238-1242.	3.3	9
115	Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Medical Genetics, 2015, 16, 55.	2.1	8
116	An update on multiple sclerosis. Journal of the Neurological Sciences, 2005, 228, 193-194.	0.6	6
117	Advances in Imaging Multiple Sclerosis. Seminars in Neurology, 2017, 37, 538-545.	1.4	6
118	Building a Precision Medicine Delivery Platform for Clinics: The University of California, San Francisco, BRIDGE Experience. Journal of Medical Internet Research, 2022, 24, e34560.	4.3	6
119	Hematopoietic Stem Cell Transplantation for MS. JAMA - Journal of the American Medical Association, 2015, 313, 251.	7.4	5
120	Imaging correlates of visual function in multiple sclerosis. PLoS ONE, 2020, 15, e0235615.	2.5	5
121	High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility. Frontiers in Immunology, 2021, 12, 644838.	4.8	5
122	Curing Multiple Sclerosis: How to Know When We're There. Annals of Neurology, 2021, 90, 539-541.	5.3	5
123	Simultaneous assessment of regional distributions of atrophy across the neuraxis in MS patients. NeuroImage: Clinical, 2022, 34, 102985.	2.7	5
124	Multiple Sclerosis: Basic Immunology. Journal of Spinal Cord Medicine, 1998, 21, 106-108.	1.4	3
125	Challenges to Longitudinal Characterization of Lower Urinary Tract Dysfunction in Multiple Sclerosis. Multiple Sclerosis and Related Disorders, 2022, 62, 103793.	2.0	3
126	Prevention strategies for multiple sclerosis. Annals of Neurology, 1994, 36, S157-S162.	5.3	2

#	Article	IF	CITATIONS
127	Reply to "Silent Progression or Bout Onset Progressive Multiple Sclerosis?― Annals of Neurology, 2019, 86, 472-473.	5.3	2
128	Nucleic Acid-Based Therapeutics Relevant to Neuroimmune Conditions. Neurotherapeutics, 2019, 16, 314-318.	4.4	2
129	Electronic Health Record Technology Designed for the Clinical Encounter: MS NeuroShare. Neurology: Clinical Practice, 2021, 11, 318-326.	1.6	2
130	Advancing ethical neuroscience. Annals of Neurology, 2015, 77, 735-737.	5.3	0
131	Reply to "Spinal Cord Atrophy Is a Preclinical Marker of Progressive <scp>MS</scp> †Annals of Neurology, 2022, 91, 735-736.	5.3	0
132	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
133	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
134	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0
135	Imaging correlates of visual function in multiple sclerosis. , 2020, 15, e0235615.		0