List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4756421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	d-enantiomers of CATH-2 enhance the response of macrophages against Streptococcus suis serotype 2. Journal of Advanced Research, 2022, 36, 101-112.	9.5	5
2	Antiviral activity of selected cathelicidins against infectious bronchitis virus. Peptide Science, 2022, 114, e24234.	1.8	2
3	The cathelicidin CATH-2 efficiently neutralizes LPS- and E. coli-induced activation of porcine bone marrow derived macrophages. Veterinary Immunology and Immunopathology, 2022, 244, 110369.	1.2	5
4	Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma. ACS Nano, 2022, 16, 1880-1895.	14.6	23
5	Pal depletion results in hypervesiculation and affects cell morphology and outer-membrane lipid asymmetry in bordetellae. Research in Microbiology, 2022, , 103937.	2.1	3
6	Modulation of outer membrane vesicle-based immune responses by cathelicidins. Vaccine, 2022, 40, 2399-2408.	3.8	6
7	Heat shock enhances outer-membrane vesicle release in Bordetella spp Current Research in Microbial Sciences, 2021, 2, 100009.	2.3	14
8	Reduction of endotoxicity in Bordetella bronchiseptica by lipid A engineering: Characterization of lpxL1 and pagP mutants. Virulence, 2021, 12, 1452-1468.	4.4	5
9	Host defence peptides identified in human apolipoprotein B as promising antifungal agents. Applied Microbiology and Biotechnology, 2021, 105, 1953-1964.	3.6	13
10	Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Frontiers in Microbiology, 2021, 12, 629090.	3.5	48
11	Outer Membrane Vesicles Protect Gram-Negative Bacteria against Host Defense Peptides. MSphere, 2021, 6, e0052321.	2.9	21
12	PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129951.	2.4	4
13	PMAP-36 reduces the innate immune response induced by Bordetella bronchiseptica-derived outer membrane vesicles. Current Research in Microbial Sciences, 2021, 2, 100010.	2.3	10
14	The immunomodulatory effect of cathelicidin-B1 on chicken macrophages. Veterinary Research, 2020, 51, 122.	3.0	16
15	A method to differentiate chicken monocytes into macrophages with proinflammatory properties. Immunobiology, 2020, 225, 152004.	1.9	16
16	Cathelicidins Modulate TLR-Activation and Inflammation. Frontiers in Immunology, 2020, 11, 1137.	4.8	92
17	Antimicrobial host defence peptides: functions and clinical potential. Nature Reviews Drug Discovery, 2020, 19, 311-332.	46.4	762
18	Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Medical Mycology, 2020, 58, 1073-1084.	0.7	27

2

#	Article	IF	CITATIONS
19	Antiviral Activity of Chicken Cathelicidin B1 Against Influenza A Virus. Frontiers in Microbiology, 2020, 11, 426.	3.5	16
20	Enhanced Antiviral Activity of Human Surfactant Protein D by Site-Specific Engineering of the Carbohydrate Recognition Domain. Frontiers in Immunology, 2019, 10, 2476.	4.8	10
21	Avian pathogenic Escherichia coli infection of a chicken lung epithelial cell line. Veterinary Immunology and Immunopathology, 2019, 210, 55-59.	1.2	13
22	Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Scientific Reports, 2019, 9, 4780.	3.3	68
23	Chicken CATH-2 Increases Antigen Presentation Markers on Chicken Monocytes and Macrophages. Protein and Peptide Letters, 2019, 27, 60-66.	0.9	6
24	Neutrophil Extracellular Traps in the Pathogenesis of Equine Recurrent Uveitis (ERU). Cells, 2019, 8, 1528.	4.1	26
25	Antifungal activities of surfactant protein D in an environment closely mimicking the lung lining. Molecular Immunology, 2019, 105, 260-269.	2.2	10
26	Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses, 2019, 11, 15.	3.3	10
27	A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages. Veterinary Immunology and Immunopathology, 2018, 200, 7-15.	1.2	40
28	Cathelicidins: Immunomodulatory Antimicrobials. Vaccines, 2018, 6, 63.	4.4	162
29	Avian pathogenic Escherichia coli-induced activation of chicken macrophage HD11â€ ⁻ cells. Developmental and Comparative Immunology, 2018, 87, 75-83.	2.3	26
30	Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. Journal of Biological Chemistry, 2018, 293, 10646-10662.	3.4	19
31	The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Veterinary Research, 2018, 49, 68.	3.0	26
32	Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Scientific Reports, 2018, 8, 10446.	3.3	69
33	Immunomodulation and effects on microbiota after in ovo administration of chicken cathelicidin-2. PLoS ONE, 2018, 13, e0198188.	2.5	11
34	Expression and characterization of recombinant chicken mannose binding lectin. Immunobiology, 2017, 222, 518-528.	1.9	12
35	Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential. Biochemical Pharmacology, 2017, 130, 34-50.	4.4	64
36	Proinflammatory Cytokines Impair Vitamin D–Induced Host Defense in Cultured Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 749-761.	2.9	31

#	Article	IF	CITATIONS
37	Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Scientific Reports, 2017, 7, 40874.	3.3	77
38	Antibacterial Defense of Human Airway Epithelial Cells from Chronic Obstructive Pulmonary Disease Patients Induced by Acute Exposure to Nontypeable Haemophilus influenzae: Modulation by Cigarette Smoke. Journal of Innate Immunity, 2017, 9, 359-374.	3.8	47
39	Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation <i>In Vivo</i> . Infection and Immunity, 2017, 85, .	2.2	26
40	CATH-2 and LL-37 increase mannose receptor expression, antigen presentation and the endocytic capacity of chicken mononuclear phagocytes. Molecular Immunology, 2017, 90, 118-125.	2.2	14
41	Cathelicidins Inhibit <i>Escherichia coli</i> –Induced TLR2 and TLR4 Activation in a Viability-Dependent Manner. Journal of Immunology, 2017, 199, 1418-1428.	0.8	75
42	Chicken mannose binding lectin has antiviral activity towards infectious bronchitis virus. Virology, 2017, 509, 252-259.	2.4	21
43	The Antibacterial and Anti-inflammatory Activity of Chicken Cathelicidin-2 combined with Exogenous Surfactant for the Treatment of Cystic Fibrosis-Associated Pathogens. Scientific Reports, 2017, 7, 15545.	3.3	18
44	Imaging the Antistaphylococcal Activity of CATH-2: Mechanism of Attack and Regulation of Inflammatory Response. MSphere, 2017, 2, .	2.9	25
45	Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens. Frontiers in Microbiology, 2017, 8, 2098.	3.5	21
46	Characterization of bovine embryos cultured under conditions appropriate for sustaining human naÃ ⁻ ve pluripotency. PLoS ONE, 2017, 12, e0172920.	2.5	17
47	Antimicrobial and Immunomodulatory Activity of PMAP-23 Derived Peptides. Protein and Peptide Letters, 2017, 24, 609-616.	0.9	25
48	Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen. Frontiers in Microbiology, 2016, 7, 438.	3.5	47
49	Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides. PLoS ONE, 2016, 11, e0147919.	2.5	51
50	Imaging the antimicrobial mechanism(s) of cathelicidin-2. Scientific Reports, 2016, 6, 32948.	3.3	64
51	Prophylactic administration of chicken cathelicidin-2 boosts zebrafish embryonic innate immunity. Developmental and Comparative Immunology, 2016, 60, 108-114.	2.3	10
52	Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Scientific Reports, 2016, 6, 26622.	3.3	39
53	Developmental regulation of chicken surfactant protein A and its localization in lung. Developmental and Comparative Immunology, 2016, 61, 80-87.	2.3	12
54	Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental and Comparative Immunology, 2016, 61, 48-59.	2.3	32

#	Article	IF	CITATIONS
55	Histones as mediators of host defense, inflammation and thrombosis. Future Microbiology, 2016, 11, 441-453.	2.0	132
56	Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia. Antimicrobial Agents and Chemotherapy, 2015, 59, 3075-3083.	3.2	47
57	A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis. BMC Genomics, 2015, 16, 277.	2.8	20
58	Importance of Endosomal Cathelicidin Degradation To Enhance DNA-Induced Chicken Macrophage Activation. Journal of Immunology, 2015, 195, 3970-3977.	0.8	42
59	Arginine-rich histones have strong antiviral activity for influenza A viruses. Innate Immunity, 2015, 21, 736-745.	2.4	45
60	Assessment of the antiviral properties of recombinant surfactant protein D against influenza B virus in vitro. Virus Research, 2015, 195, 43-46.	2.2	10
61	Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides. PLoS ONE, 2014, 9, e95939.	2.5	114
62	Recombinant porcine surfactant protein D inhibits influenza A virus replication ex vivo. Virus Research, 2014, 181, 22-26.	2.2	11
63	Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. Journal of Leukocyte Biology, 2014, 96, 105-111.	3.3	64
64	Fungicidal Mechanisms of Cathelicidins LL-37 and CATH-2 Revealed by Live-Cell Imaging. Antimicrobial Agents and Chemotherapy, 2014, 58, 2240-2248.	3.2	58
65	Avian host defense peptides. Developmental and Comparative Immunology, 2013, 41, 352-369.	2.3	163
66	Meet the Stem Cells. Contemporary Food Engineering, 2013, , 111-142.	0.2	0
67	A Unique Sugar-binding Site Mediates the Distinct Anti-influenza Activity of Pig Surfactant Protein D. Journal of Biological Chemistry, 2012, 287, 26666-26677.	3.4	23
68	Campylobacter jejuni is highly susceptible to killing by chicken host defense peptide cathelicidin-2 and suppresses intestinal cathelicidin-2 expression in young broilers. Veterinary Microbiology, 2012, 160, 347-354.	1.9	25
69	Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature, 2012, 487, 109-113.	27.8	691
70	A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms. International Journal of Antimicrobial Agents, 2011, 37, 476-479.	2.5	34
71	Identification and characterisation of the BPI/LBP/PLUNC-like gene repertoire in chickens reveals the absence of a LBP gene. Developmental and Comparative Immunology, 2011, 35, 285-295.	2.3	28
72	Improved proteolytic stability of chicken cathelicidin-2 derived peptides by d-amino acid substitutions and cyclization. Peptides, 2011, 32, 875-880.	2.4	77

#	Article	IF	CITATIONS
73	Assessment of the Antiviral Properties of Recombinant Porcine SP-D against Various Influenza A Viruses In Vitro. PLoS ONE, 2011, 6, e25005.	2.5	28
74	The carbohydrate recognition domain of collectins. FEBS Journal, 2011, 278, 3930-3941.	4.7	48
75	Alpha 6 integrin is important for myogenic stem cell differentiation. Stem Cell Research, 2011, 7, 112-123.	0.7	33
76	Introduction of N-Linked Glycans in the Lectin Domain of Surfactant Protein D. Journal of Biological Chemistry, 2011, 286, 20137-20151.	3.4	24
77	Extracellular matrix components direct porcine muscle stem cell behavior. Experimental Cell Research, 2010, 316, 341-352.	2.6	81
78	Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents. International Journal of Antimicrobial Agents, 2010, 36, 271-274.	2.5	28
79	Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature Cathelicidin-2 upon stimulation with LPS. Molecular Immunology, 2009, 46, 1517-1526.	2.2	76
80	Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Molecular Immunology, 2009, 46, 2465-2473.	2.2	69
81	Isolation and characterization of porcine adult muscleâ€derived progenitor cells. Journal of Cellular Biochemistry, 2008, 105, 1228-1239.	2.6	67
82	Avian defensins. Veterinary Immunology and Immunopathology, 2008, 124, 1-18.	1.2	175
83	Surfactant Collectins and Innate Immunity. Neonatology, 2008, 93, 288-294.	2.0	109
84	The β-Defensin Gallinacin-6 Is Expressed in the Chicken Digestive Tract and Has Antimicrobial Activity against Food-Borne Pathogens. Antimicrobial Agents and Chemotherapy, 2007, 51, 912-922.	3.2	119
85	Expression sites of the collectin SP-D suggest its importance in first line host defence: Power of combining in situ hybridisation, RT-PCR and immunohistochemistry. Molecular Immunology, 2007, 44, 3324-3332.	2.2	29
86	Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria. Molecular Immunology, 2007, 44, 3517-3527.	2.2	26
87	Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Developmental Biology, 2007, 7, 58.	2.1	135
88	Characterization and expression sites of newly identified chicken collectins. Molecular Immunology, 2006, 43, 1604-1616.	2.2	49
89	Collectin-mediated innate immune defense in the lung. Journal of Organ Dysfunction, 2006, 2, 230-236.	0.3	1
90	CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Veterinary Immunology and Immunopathology, 2005, 106, 321-327.	1.2	75

#	Article	IF	CITATIONS
91	Structural and Functional Aspects of the Collectin SP-A. Immunobiology, 2002, 205, 476-489.	1.9	23
92	Localization and Functions of SP-A and SP-D at Mucosal Surfaces. Fetal and Pediatric Pathology, 2001, 20, 319-339.	0.3	34
93	Surfactant-associated proteins: functions and structural variation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 91-108.	1.8	173
94	The Juxtamembrane Lysine and Arginine Residues of Surfactant Protein C Precursor Influence Palmitoylation via Effects on Trafficking. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 156-163.	2.9	22
95	Alveolar Macrophages, Surfactant Lipids, and Surfactant Protein B Regulate the Induction of Immune Responses via the Airways. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 452-458.	2.9	39
96	The lipids of pulmonary surfactant: dynamics and interactions with proteins. Progress in Lipid Research, 1998, 37, 235-276.	11.6	94