Christopher H House

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4754016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depleted carbon isotope compositions observed at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
2	Oxidized and Reduced Sulfur Observed by the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover Within the Glen Torridon Region at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
3	Orbital and Inâ€Situ Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	18
4	Evolved Gas Analyses of Sedimentary Rocks From the Glen Torridon Clayâ€Bearing Unit, Gale Crater, Mars: Results From the Mars Science Laboratory Sample Analysis at Mars Instrument Suite. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
5	Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars. Proceedings of the United States of America, 2022, 119, .	7.1	14
6	Reply to Schoell: Implications of a temperature trend in methane evolved from Cumberland during Mars evolved gas analyses experiments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
7	The Grayness of the Origin of Life. Life, 2021, 11, 498.	2.4	10
8	Origin of Life on Mars: Suitability and Opportunities. Life, 2021, 11, 539.	2.4	18
9	Convergent Microbial Community Formation in Replicate Anaerobic Reactors Inoculated from Different Sources and Treating Ersatz Crew Waste. Life, 2021, 11, 1374.	2.4	1
10	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	3.0	43
11	Extraformational sediment recycling on Mars. , 2020, 16, 1508-1537.		20
12	Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006527.	3.6	69
13	Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006299.	3.6	30
14	In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield. Life, 2020, 10, 307.	2.4	5
15	Constraints on the Mineralogy and Geochemistry of Vera Rubin Ridge, Gale Crater, Mars, From Mars Science Laboratory Sample Analysis at Mars Evolved Gas Analyses. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006309.	3.6	32
16	Detection of Reduced Sulfur on Vera Rubin Ridge by Quadratic Discriminant Analysis of Volatiles Observed During Evolved Gas Analysis. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006304.	3.6	25
17	A Lacustrine Paleoenvironment Recorded at Vera RubinRidge, Gale Crater: Overview of the Sedimentology and Stratigraphy Observed by the Mars ScienceLaboratory Curiosity Rover. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006307.	3.6	69
18	The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006320	3.6	41

CHRISTOPHER H HOUSE

#	Article	IF	CITATIONS
19	Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy, 2020, 4, 526-532.	10.1	41
20	Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites. Nature Communications, 2019, 10, 2777.	12.8	28
21	Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Scientific Reports, 2019, 9, 9281.	3.3	26
22	Microbial Diversity in Sub-Seafloor Sediments from the Costa Rica Margin. Geosciences (Switzerland), 2019, 9, 218.	2.2	11
23	The Emergence of Life. Space Science Reviews, 2019, 215, 1.	8.1	53
24	Late-stage diagenetic concretions in the Murray formation, Gale crater, Mars. Icarus, 2019, 321, 866-890.	2.5	50
25	Early Archean planktonic mode of life: Implications from fluid dynamics of lenticular microfossils. Geobiology, 2019, 17, 113-126.	2.4	12
26	Biogeography of thermophiles and predominance of Thermus scotoductus in domestic water heaters. Extremophiles, 2019, 23, 119-132.	2.3	4
27	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	12.6	224
28	THINGS ARE NOT ALWAYS AS THEY SEEM: DETANGLING INTERSECTING PLANAR AND CURVI-PLANAR VEINS AND FRACTURES FROM PRIMARY BEDDING IN THE VERA RUBIN RIDGE MEMBER, MURRAY FORMATION, MARS. , 2018, , .		3
29	Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions. Origins of Life and Evolution of Biospheres, 2017, 47, 3-11.	1.9	2
30	Large and robust lenticular microorganisms on the young Earth. Precambrian Research, 2017, 296, 112-119.	2.7	38
31	Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. Life Sciences in Space Research, 2017, 15, 32-42.	2.3	16
32	Large sulfur isotope fractionations in Martian sediments at Gale crater. Nature Geoscience, 2017, 10, 658-662.	12.9	53
33	Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. Journal of Geophysical Research E: Planets, 2017, 122, 2574-2609.	3.6	168
34	Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments. Archaea, 2016, 2016, 1-12.	2.3	15
35	Genome-wide gene order distances support clustering the gram-positive bacteria. Frontiers in Microbiology, 2015, 5, 785.	3.5	2
36	Penciling in details of the Hadean. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14410-14411.	7.1	6

Christopher H House

#	Article	IF	CITATIONS
37	Vesicles Protect Activated Acetic Acid. Astrobiology, 2014, 14, 859-865.	3.0	5
38	Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes. Geochimica Et Cosmochimica Acta, 2014, 136, 1-12.	3.9	47
39	The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Frontiers in Microbiology, 2013, 4, 327.	3.5	40
40	Dynamics and Persistence of Dead Sea Microbial Populations as Shown by High-Throughput Sequencing of rRNA. Applied and Environmental Microbiology, 2012, 78, 2489-2492.	3.1	22
41	Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13995-13998.	7.1	460
42	The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy. Life, 2011, 1, 19-33.	2.4	14
43	High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology, 2011, 9, 131-139.	2.4	58
44	Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environmental Microbiology, 2010, 12, 2613-2623.	3.8	45
45	Patterns of ¹⁵ N assimilation and growth of methanotrophic ANMEâ€2 archaea and sulfateâ€reducing bacteria within structured syntrophic consortia revealed by FISHâ€6IMS. Environmental Microbiology, 2009, 11, 1777-1791.	3.8	85
46	Extensive carbon isotopic heterogeneity among methane seep microbiota. Environmental Microbiology, 2009, 11, 2207-2215.	3.8	51
47	Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleoâ€microbial processes. Geobiology, 2009, 7, 360-372.	2.4	64
48	The Tree of Life Viewed Through the Contents of Genomes. Methods in Molecular Biology, 2009, 532, 141-161.	0.9	16
49	Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 2009, 325, 184-187.	12.6	873
50	Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 2008, 10, 162-173.	3.8	118
51	Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10583-10588.	7.1	484
52	Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea. Applied and Environmental Microbiology, 2007, 73, 2271-2283.	3.1	157
53	Linking taxonomy with environmental geochemistry and why it matters to the field of geobiology. Geobiology, 2007, 5, 1-3.	2.4	8
54	Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3846-3851.	7.1	654

Christopher H House

#	ARTICLE	IF	CITATIONS
55	Metal limitation of cyanobacterial N2fixation and implications for the Precambrian nitrogen cycle. Geobiology, 2006, 4, 285-297.	2.4	115
56	The Stepwise Evolution of Early Life Driven by Energy Conservation. Molecular Biology and Evolution, 2006, 23, 1286-1292.	8.9	109
57	Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology, 2005, 3, 287-295.	2.4	54
58	Distributions of Microbial Activities in Deep Subseafloor Sediments. Science, 2004, 306, 2216-2221.	12.6	681
59	Geobiological analysis using whole genome-based tree building applied to the Bacteria, Archaea, and Eukarya. Geobiology, 2003, 1, 15-26.	2.4	63
60	To Build a Pre-RNA. Astrobiology, 2003, 3, 245-247.	3.0	1
61	Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7663-7668.	7.1	604
62	Using Homolog Groups to Create a Whole-Genomic Tree of Free-Living Organisms: An Update. Journal of Molecular Evolution, 2002, 54, 539-547.	1.8	118
63	Methane-Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis. Science, 2001, 293, 484-487.	12.6	957
64	Carbon isotopic composition of individual Precambrian microfossils. Geology, 2000, 28, 707.	4.4	157
65	Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Research, 1999, 27, 4218-4222.	14.5	293