
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4753199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the covid-19 pandemic on amyotrophic lateral sclerosis care in the UK. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 91-99.	1.7	7
2	Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain, 2022, 145, 27-44.	7.6	38
3	Fatigue and anxiety mediate the effect of dyspnea on quality of life in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 390-398.	1.7	4
4	Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron, 2022, 110, 992-1008.e11.	8.1	51
5	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	3.8	23
6	The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis. Brain, 2022, 145, 1207-1210.	7.6	21
7	Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries. Circulation Research, 2022, 130, 166-180.	4.5	15
8	OUP accepted manuscript. Brain, 2022, , .	7.6	0
9	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
10	Clinical trials in pediatric ALS: a TRICALS feasibility study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 481-488.	1.7	3
11	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
12	Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 480-493.	10.2	124
13	Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 465-479.	10.2	130
14	GEOexplorer: a webserver for gene expression analysis and visualisation. Nucleic Acids Research, 2022, 50, W367-W374.	14.5	17
15	Protocol for Rhapsody: a longitudinal observational study examining the feasibility of speech phenotyping for remote assessment of neurodegenerative and psychiatric disorders. BMJ Open, 2022, 12, e061193.	1.9	5
16	Facial Onset Sensory and Motor Neuronopathy. Neurology: Clinical Practice, 2021, 11, 147-157.	1.6	16
17	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	8.1	56
18	Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2021, 17–104-118	10.1	152

#	Article	IF	CITATIONS
19	Measuring coping in people with amyotrophic lateral sclerosis using the Coping Index-ALS: A patient derived, Rasch compliant scale. Journal of the Neurological Sciences, 2021, 421, 117285.	0.6	0
20	Clinical staging in amyotrophic lateral sclerosis: analysis of Edaravone Study 19. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 165-171.	1.9	20
21	The genetic architecture of ALS. Neurobiology of Disease, 2021, 147, 105156.	4.4	49
22	Motor Neuron Disease Register for England, Wales and Northern Ireland—an analysis of incidence in England. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 86-93.	1.7	10
23	The Effect of <scp><i>SMN</i></scp> Gene Dosage on <scp>ALS</scp> Risk and Disease Severity. Annals of Neurology, 2021, 89, 686-697.	5.3	10
24	Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Communications, 2021, 3, fcab143.	3.3	29
25	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
26	Intuitive Staging Correlates With King's Clinical Stage. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 336-340.	1.7	2
27	Preventing neurodegenerative disease. Brain, 2021, 144, 1279-1280.	7.6	6
28	Does genetic anticipation occur in familial Alexander disease?. Neurogenetics, 2021, 22, 215-219.	1.4	4
29	DGLinker: flexible knowledge-graph prediction of disease–gene associations. Nucleic Acids Research, 2021, 49, W153-W161.	14.5	19
30	A multicentre validation study of the diagnostic value of plasma neurofilament light. Nature Communications, 2021, 12, 3400.	12.8	219
31	A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex. Scientific Reports, 2021, 11, 14283.	3.3	13
32	#3090â€Different measures of behavioural involvement in amyotrophic lateral sclerosis yield varying rates of behavioural change. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, A12.1-A12.	1.9	0
33	Innovating Clinical Trials for Amyotrophic Lateral Sclerosis. Neurology, 2021, 97, 528-536.	1.1	19
34	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
35	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	21.4	218
36	Correlations between measures of ALS respiratory function: is there an alternative to FVC?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 495-504.	1.7	2

#	Article	IF	CITATIONS
37	Safety and efficacy of oral levosimendan in people with amyotrophic lateral sclerosis (the REFALS) Tj ETQq1 1 0.7 821-831.	84314 rgB 10.2	T /Overloc 9
38	Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Communications, 2021, 3, fcab141.	3.3	17
39	<i>SCFD1</i> expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain Communications, 2021, 3, fcab236.	3.3	14
40	Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. ELife, 2021, 10, .	6.0	44
41	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223
42	Do pain, anxiety and depression influence quality of life for people with amyotrophic lateral sclerosis/motor neuron disease? A national study reconciling previous conflicting literature. Journal of Neurology, 2020, 267, 607-615.	3.6	25
43	TRICALS: creating a highway toward a cure. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 496-501.	1.7	20
44	Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Reports, 2020, 33, 108456.	6.4	24
45	Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Molecular Brain, 2020, 13, 154.	2.6	7
46	Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine, 2020, 59, 102844.	6.1	41
47	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Reports, 2020, 33, 108323.	6.4	41
48	Relationship between smoking and ALS: Mendelian randomisation interrogation of causality. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1312-1315.	1.9	11
49	REM sleep physiology and selective neuronal vulnerability in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 789-790.	1.9	3
50	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83
51	Evolution of white matter damage in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 722-732.	3.7	16
52	A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Genes, 2020, 11, 668.	2.4	16
53	The use of biotelemetry to explore disease progression markers in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 563-573.	1.7	12
54	Measuring quality of life in ALS/MND: validation of the WHOQOL-BREF. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 364-372.	1.7	5

#	Article	IF	CITATIONS
55	Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 485-495.	1.7	32
56	UK case control study of smoking and risk of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 222-227.	1.7	10
57	A proposal for new diagnostic criteria for ALS. Clinical Neurophysiology, 2020, 131, 1975-1978.	1.5	268
58	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
59	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	3.2	13
60	Needs and preferences for psychological interventions of people with motor neuron disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 521-531.	1.7	16
61	C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathologica Communications, 2019, 7, 115.	5.2	75
62	Response to the Letter from Garcia-Montojo and colleagues concerning our paper entitled, Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2019, 7, 102.	5.2	9
63	Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 532-537.	1.7	22
64	Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 595-604.	1.7	63
65	Health care professionals' views on psychological factors affecting nutritional behaviour in people with motor neuron disease: A thematic analysis. British Journal of Health Psychology, 2019, 24, 953-969.	3.5	17
66	The relationships between symptoms, disability, perceived health and quality of life in amyotrophic lateral sclerosis/motor neuron disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 317-327.	1.7	27
67	Genomeâ€wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1049-1059.	3.9	24
68	Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2019, 7, 45.	5.2	44
69	ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 207-215.	1.7	11
70	Relative preservation of triceps over biceps strength in upper limb-onset ALS: the â€~split elbow'. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 730-733.	1.9	34
71	Predicting the future of ALS: the impact of demographic change and potential new treatments on the prevalence of ALS in the United Kingdom, 2020–2116. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 264-274.	1.7	21
72	Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 229-234.	1.7	18

#	Article	IF	CITATIONS
73	Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 26, 2298-2306.e5.	6.4	57
74	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
75	A standard operating procedure for King's ALS clinical staging. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 159-164.	1.7	26
76	Oral levosimendan in amyotrophic lateral sclerosis: a phase II multicentre, randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1165-1170.	1.9	17
77	Critical design considerations for time-to-event endpoints in amyotrophic lateral sclerosis clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, jnnp-2019-320998.	1.9	14
78	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	12.4	37
79	Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nature Neuroscience, 2019, 22, 1966-1974.	14.8	101
80	Potential of the Cardiovascular Drug Levosimendan in the Management of Amyotrophic Lateral Sclerosis: An Overview of a Working Hypothesis. Journal of Cardiovascular Pharmacology, 2019, 74, 389-399.	1.9	10
81	New therapies for neuromuscular diseases in 2018. Lancet Neurology, The, 2019, 18, 12-13.	10.2	1
82	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	3.1	26
83	Retrotransposons in the development and progression of amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 284-293.	1.9	29
84	Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiology of Aging, 2019, 73, 229.e5-229.e9.	3.1	16
85	Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 268-271.	1.9	38
86	Objectively Monitoring Amyotrophic Lateral Sclerosis Patient Symptoms During Clinical Trials With Sensors: Observational Study. JMIR MHealth and UHealth, 2019, 7, e13433.	3.7	32
87	Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurology, The, 2018, 17, 416-422.	10.2	175
88	Development and validation of Spasticity Index-Amyotrophic Lateral Sclerosis. Acta Neurologica Scandinavica, 2018, 138, 47-54.	2.1	7
89	Finding a Treatment for ALS — Will Gene Editing Cut It?. New England Journal of Medicine, 2018, 378, 1454-1456.	27.0	11
90	ECAS A-B-C: alternate forms of the Edinburgh Cognitive and Behavioural ALS Screen. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 57-64.	1.7	19

#	Article	IF	CITATIONS
91	Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Human Molecular Genetics, 2018, 27, 1276-1289.	2.9	56
92	Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurology, The, 2018, 17, 423-433.	10.2	342
93	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
94	Measuring reliable change in cognition using the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 65-73.	1.7	28
95	Reconsidering the causality of TIA1 mutations in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 1-3.	1.7	22
96	ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology, 2018, 91, e1370-e1380.	1.1	170
97	ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiology of Aging, 2018, 71, 266.e1-266.e10.	3.1	59
98	Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. European Journal of Human Genetics, 2018, 26, 1537-1546.	2.8	129
99	The multistep hypothesis of ALS revisited. Neurology, 2018, 91, e635-e642.	1.1	146
100	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
101	Stage of prolonged survival in ALS – Author's reply. Lancet Neurology, The, 2018, 17, 579-580.	10.2	2
102	<i>CHCHD10</i> variants in amyotrophic lateral sclerosis: Where is the evidence?. Annals of Neurology, 2018, 84, 110-116.	5.3	24
103	The life expectancy of Stephen Hawking, according to the ENCALS model. Lancet Neurology, The, 2018, 17, 662-663.	10.2	6
104	Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Molecular Neurodegeneration, 2018, 13, 41.	10.8	77
105	Distinct Clinical Features and Outcomes in Motor Neuron Disease Associated with Behavioural Variant Frontotemporal Dementia. Dementia and Geriatric Cognitive Disorders, 2018, 45, 220-231.	1.5	4
106	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	3.1	86
107	Genetic testing in ALS. Neurology, 2017, 88, 991-999.	1.1	57
108	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	1.9	33

#	Article	IF	CITATIONS
109	The changing picture of amyotrophic lateral sclerosis: lessons from European registers. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 557-563.	1.9	89
110	Comparison of the King's and MiToS staging systems for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 227-232.	1.7	58
111	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	7.6	71
112	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
113	Amyotrophic lateral sclerosis. Lancet, The, 2017, 390, 2084-2098.	13.7	867
114	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	12.8	114
115	Proposed association between the hexanucleotide repeat of <i>C9orf72</i> and opposability index of the thumb. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 175-181.	1.7	6
116	Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nature Reviews Neurology, 2017, 13, 96-104.	10.1	245
117	Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 2017, 3, 17071.	30.5	885
118	July 2017 ENCALS statement on edaravone. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 471-474.	1.7	41
119	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.1	82
120	Perspective: Don't keep it in the family. Nature, 2017, 550, S112-S112.	27.8	13
121	Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 2017, 377, 1602-1602.	27.0	118
122	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	5.5	277
123	Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nature Communications, 2017, 8, 611.	12.8	93
124	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
125	The benefit of evolving multidisciplinary care in ALS: a diagnostic cohort survival comparison. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 569-575.	1.7	38
126	Genetic screening in sporadic ALS and FTD. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1042-1044.	1.9	105

#	Article	IF	CITATIONS
127	Amyotrophic Lateral Sclerosis. New England Journal of Medicine, 2017, 377, 162-172.	27.0	1,264
128	A multicentre evaluation of oropharyngeal secretion management practices in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 1-9.	1.7	20
129	Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Frontiers in Molecular Neuroscience, 2017, 10, 370.	2.9	24
130	What causes amyotrophic lateral sclerosis?. F1000Research, 2017, 6, 371.	1.6	94
131	Nonmotor Symptoms in Amyotrophic Lateral Sclerosis: A Systematic Review. International Review of Neurobiology, 2017, 134, 1409-1441.	2.0	37
132	A clinical tool for predicting survival in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1361-1367.	1.9	57
133	Analysis of terms used for the diagnosis and classification of amyotrophic lateral sclerosis and motor neuron disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 600-604.	1.7	7
134	Amyotrophic lateral sclerosis: A higher than expected incidence in people over 80 years of age. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 522-527.	1.7	15
135	A mapping review of international guidance on the management and care of amyotrophic lateral sclerosis (ALS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 325-336.	1.7	14
136	Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients. NeuroMolecular Medicine, 2016, 18, 551-560.	3.4	67
137	How integrated are neurology and palliative care services? Results of a multicentre mapping exercise. BMC Neurology, 2016, 16, 63.	1.8	41
138	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
139	Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurology, The, 2016, 15, 1182-1194.	10.2	301
140	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
141	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
142	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	9.0	57
143	The ALSFRS as an outcome measure in therapeutic trials and its relationship to symptom onset. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 414-425.	1.7	65
144	Decision Making About Gastrostomy and Noninvasive Ventilation in Amyotrophic Lateral Sclerosis. Qualitative Health Research, 2016, 26, 1366-1381.	2.1	36

#	Article	IF	CITATIONS
145	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	7.9	260
146	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	8.4	150
147	Commentary. Epidemiology, 2015, 26, 821-823.	2.7	11
148	Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1600.e5-1600.e8.	3.1	32
149	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	12.6	823
150	Accepting or declining non-invasive ventilation or gastrostomy in amyotrophic lateral sclerosis: patients' perspectives. Journal of Neurology, 2015, 262, 1002-1013.	3.6	47
151	The El Escorial criteria: Strengths and weaknesses. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 1-7.	1.7	69
152	Impact of disease, cognitive and behavioural factors on caregiver outcome in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 316-323.	1.7	33
153	Intermediate length C9orf72 expansion in an ALS patient without classical C9orf72 neuropathology. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 249-251.	1.7	8
154	Regionality of disease progression predicts prognosis in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 442-447.	1.7	3
155	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
156	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.8	152
157	Endogenous retroviruses in ALS: A reawakening?. Science Translational Medicine, 2015, 7, 307fs40.	12.4	8
158	Psychotherapy and pharmacotherapy interventions to reduce distress or improve well-being in people with amyotrophic lateral sclerosis: A systematic review. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 293-302.	1.7	30
159	Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis. Journal of Neurology, 2015, 262, 1681-1690.	3.6	36
160	The CHCHD10 P34S variant is not associated with ALS in a UK cohort of familial and sporadic patients. Neurobiology of Aging, 2015, 36, 2908.e17-2908.e18.	3.1	19
161	Use of clinical staging in amyotrophic lateral sclerosis for phase 3 clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 45-49.	1.9	75
162	Novel mutations support a role for Profilin 1 in the pathogenesis of ALS. Neurobiology of Aging, 2015, 36, 1602.e17-1602.e27.	3.1	87

#	Article	IF	CITATIONS
163	An Evaluation of a SVA Retrotransposon in the FUS Promoter as a Transcriptional Regulator and Its Association to ALS. PLoS ONE, 2014, 9, e90833.	2.5	32
164	Psychological as well as illness factors influence acceptance of non-invasive ventilation (NIV) and gastrostomy in amyotrophic lateral sclerosis (ALS): A prospective population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 376-387.	1.7	42
165	AMYOTROPHIC LATERAL SCLEROSIS ASSOCIATED WITH AN INTERMEDIATE LENGTH GGGGCC REPEAT EXPANSION HAS DISTINCT NEUROPATHOLOGY COMPARED TO PATIENTS WITH LARGER EXPANSIONS. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.130-e4.	1.9	0
166	Heritability of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 1579.	9.0	0
167	Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study. Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.	3.1	16
168	A phase Ilâ^'III trial of olesoxime in subjects with amyotrophic lateral sclerosis. European Journal of Neurology, 2014, 21, 529-536.	3.3	104
169	A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 2220-2231.	2.9	123
170	Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurology, The, 2014, 13, 1108-1113.	10.2	302
171	The evaluation of pain in amyotrophic lateral sclerosis: A case controlled observational study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 520-527.	1.7	55
172	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
173	Quantifying disease progression in amyotrophic lateral sclerosis. Annals of Neurology, 2014, 76, 643-657.	5.3	133
174	No evidence for shared genetic basis of common variants in multiple sclerosis and amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 1916-1922.	2.9	23
175	Common genetic variants and the heritability of ALS. Nature Reviews Neurology, 2014, 10, 549-550.	10.1	11
176	<scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.	5.3	91
177	Evidence of an environmental effect on survival in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 528-533.	1.7	16
178	Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 279-284.	1.7	111
179	Health utility decreases with increasing clinical stage in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 285-291.	1.7	26
180	High-calorie diets in amyotrophic lateral sclerosis. Lancet, The, 2014, 383, 2028-2030.	13.7	5

#	Article	IF	CITATIONS
181	Analysis of the hexanucleotide repeat expansion and founder haplotype at C9ORF72 in an Irish psychosis case-control sample. Neurobiology of Aging, 2014, 35, 1510.e1-1510.e5.	3.1	20
182	Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging, 2013, 34, 2234.e1-2234.e7.	3.1	22
183	Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurology, The, 2013, 12, 1059-1067.	10.2	216
184	The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Reviews Neurology, 2013, 9, 617-628.	10.1	658
185	Management of sialorrhoea in motor neuron disease: A survey of current UK practice. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 521-527.	1.7	28
186	Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiology of Aging, 2013, 34, 357.e7-357.e19.	3.1	69
187	Lithium in patients with amyotrophic lateral sclerosis (LiCALS): a phase 3 multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2013, 12, 339-345.	10.2	118
188	Trimodal pattern of C9ORF72 GGGGCC normal allele repeat number in sporadic amyotrophic lateral sclerosis and lack of association with disease risk and age at onset. Lancet, The, 2013, 381, S116.	13.7	0
189	Genetic ablation of phospholipase C delta 1 increases survival in SOD1C93A mice. Neurobiology of Disease, 2013, 60, 11-17.	4.4	18
190	H63D polymorphism in HFE is not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 1517.e5-1517.e7.	3.1	19
191	Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nature Genetics, 2013, 45, 697-700.	21.4	67
192	Infrastructure resources for clinical research in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 53-61.	1.7	14
193	Genetic and epigenetic studies of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 44-52.	1.7	34
194	The C9ORF72 expansion mutation is a common cause of ALS+/â^'FTD in Europe and has a single founder. European Journal of Human Genetics, 2013, 21, 102-108.	2.8	201
195	Homozygosity analysis in amyotrophic lateral sclerosis. European Journal of Human Genetics, 2013, 21, 1429-1435.	2.8	12
196	Amyotrophic lateral sclerosis and cancer: A register-based study in Sweden. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 362-368.	1.7	37
197	Current pathways for epidemiological research in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 33-43.	1.7	33
198	Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Human Molecular Genetics, 2013, 22, 1539-1557.	2.9	115

#	Article	IF	CITATIONS
199	Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis?. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 494-498.	1.9	130
200	Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: A populationâ€based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 699-708.	5.3	116
201	Credibility Analysis of Putative Disease-Causing Genes Using Bioinformatics. PLoS ONE, 2013, 8, e64899.	2.5	13
202	Healthcare Professionals' Views on the provision of Gastrostomy and Noninvasive Ventilation to Amyotrophic Lateral Sclerosis Patients in England, Wales, and Northern Ireland. Journal of Palliative Care, 2013, 29, 225-231.	1.0	13
203	Development of a Smartphone App for a Genetics Website: The Amyotrophic Lateral Sclerosis Online Genetics Database (ALSoD). JMIR MHealth and UHealth, 2013, 1, e18.	3.7	51
204	Healthcare professionals' views on the provision of gastrostomy and noninvasive ventilation to amyotrophic lateral sclerosis patients in England, Wales, and Northern Ireland. Journal of Palliative Care, 2013, 29, 225-31.	1.0	3
205	No evidence for a large difference in ALS frequency in populations of African and European origin: A population based study in inner city London. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 66-68.	2.1	13
206	Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain, 2012, 135, 2883-2891.	7.6	65
207	The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	2.6	53
208	Journal Watch: Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of neurodegenerative disease management. Neurodegenerative Disease Management, 2012, 2, 103-105.	2.2	0
209	Ask the Experts: Translating amyotrophic lateral sclerosis genetics to the clinic: implications for the patient. Neurodegenerative Disease Management, 2012, 2, 355-360.	2.2	Ο
210	Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 418-420.	3.1	8
211	The chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiology of Aging, 2012, 33, 209.e3-209.e8.	3.1	115
212	Mutation analysis of VCP in British familial and sporadic amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2012, 33, 2721.e1-2721.e2.	3.1	16
213	Screening for OPTN mutations in a cohort of British amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2012, 33, 2948.e15-2948.e17.	3.1	18
214	EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 2012, 18, 1418-1422.	30.7	269
215	The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 2012, 124, 339-352.	7.7	346
216	Prognostic categories for amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 502-508.	2.1	24

#	Article	IF	CITATIONS
217	Common Genetic Variants and Gene-Expression Changes Associated with Bipolar Disorder Are Over-Represented in Brain Signaling Pathway Genes. Biological Psychiatry, 2012, 72, 311-317.	1.3	56
218	A proposed staging system for amyotrophic lateral sclerosis. Brain, 2012, 135, 847-852.	7.6	296
219	Genome-wide association study of Alzheimer's disease with psychotic symptoms. Molecular Psychiatry, 2012, 17, 1316-1327.	7.9	110
220	Eating-derived pleasure in amyotrophic lateral sclerosis as a predictor of non-oral feeding. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 555-559.	2.1	18
221	Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS. PLoS ONE, 2012, 7, e35333.	2.5	50
222	ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Human Mutation, 2012, 33, 1345-1351.	2.5	262
223	Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurology, The, 2012, 11, 232-240.	10.2	493
224	Trauma and amyotrophic lateral sclerosis: a case–control study from a populationâ€based registry. European Journal of Neurology, 2012, 19, 1509-1517.	3.3	63
225	An MND/ALS phenotype associated with <i>C9orf72</i> repeat expansion: Abundant p62â€positive, TDPâ€43â€negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology, 2012, 32, 505-514.	1.2	110
226	Keeping up with genetic discoveries in amyotrophic lateral sclerosis: The ALSoD and ALSGene databases. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 238-249.	2.1	82
227	Clinical genetics of amyotrophic lateral sclerosis: what do we really know?. Nature Reviews Neurology, 2011, 7, 603-615.	10.1	661
228	No association of DPP6 with amyotrophic lateral sclerosis in an Italian population. Neurobiology of Aging, 2011, 32, 966-967.	3.1	28
229	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
230	p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathologica, 2011, 122, 691-702.	7.7	432
231	Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic Lateral Sclerosis (LiCALS) [Eudract number: 2008-006891-31]. BMC Neurology, 2011, 11, 111.	1.8	16
232	The risk to relatives of patients with sporadic amyotrophic lateral sclerosis. Brain, 2011, 134, 3454-3457.	7.6	50
233	Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease. Human Heredity, 2011, 71, 281-288.	0.8	93
234	Low index-to-ring finger length ratio in sporadic ALS supports prenatally defined motor neuronal vulnerability. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 635-7.	1.9	48

#	Article	IF	CITATIONS
235	Concordance between site of onset and limb dominance in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 853-854.	1.9	114
236	Infection of the Central Nervous System, Sepsis and Amyotrophic Lateral Sclerosis. PLoS ONE, 2011, 6, e29749.	2.5	15
237	Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurology, The, 2010, 9, 986-994.	10.2	205
238	Nutritional factors associated with survival following enteral tube feeding in patients with motor neurone disease. Journal of Human Nutrition and Dietetics, 2010, 23, 408-415.	2.5	41
239	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	2.5	347
240	A large genome scan for rare CNVs in amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 4091-4099.	2.9	51
241	An estimate of amyotrophic lateral sclerosis heritability using twin data. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1324-1326.	1.9	270
242	Tau levels do not influence human ALS or motor neuron degeneration in the <i> SOD1 ^{G93A} </i> mouse. Neurology, 2010, 74, 1687-1693.	1.1	18
243	The sex ratio in amyotrophic lateral sclerosis: A population based study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 439-442.	2.1	140
244	RNA metabolism and the pathogenesis of motor neuron diseases. Trends in Neurosciences, 2010, 33, 249-258.	8.6	60
245	The association between ALS and population density: A population based study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 435-438.	2.1	18
246	Latent Cluster Analysis of ALS Phenotypes Identifies Prognostically Differing Groups. PLoS ONE, 2009, 4, e7107.	2.5	59
247	Genetic Variants of the α-Synuclein Gene SNCA Are Associated with Multiple System Atrophy. PLoS ONE, 2009, 4, e7114.	2.5	144
248	Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology, 2009, 72, 1087-1094.	1.1	207
249	Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Human Molecular Genetics, 2009, 18, 472-481.	2.9	512
250	Geographical Clustering of Amyotrophic Lateral Sclerosis in South-East England: A Population Study. Neuroepidemiology, 2009, 32, 81-88.	2.3	40
251	Rare missense variants of neuronal nicotinic acetylcholine receptor altering receptor function are associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2009, 18, 3997-4006.	2.9	42
252	Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. Journal of Medical Genetics, 2009, 46, 840-846.	3.2	70

#	Article	IF	CITATIONS
253	Reduced expression of the <i>Kinesin-Associated Protein 3</i> (<i>KIFAP3</i>) gene increases survival in sporadic amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9004-9009.	7.1	177
254	A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS. Neurology, 2009, 73, 16-24.	1.1	66
255	SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. Journal of Neurology, 2009, 256, 234-241.	3.6	76
256	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697
257	Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 2009, 41, 1083-1087.	21.4	344
258	A case report of a family with overlapping features of autosomal dominant febrile seizures and GEFS+. Epilepsia, 2009, 50, 937-942.	5.1	3
259	Mushroom-cage gastrostomy tube placement in patients with amyotrophic lateral sclerosis: a 5-year experience in 104 patients in a single institution. European Radiology, 2009, 19, 1763-1771.	4.5	27
260	Meta-analysis of linkage studies for Alzheimer's disease—A web resource. Neurobiology of Aging, 2009, 30, 1037-1047.	3.1	58
261	Genetic studies of amyotrophic lateral sclerosis: Controversies and perspectives. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 1-14.	2.1	81
262	Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science, 2009, 323, 1208-1211.	12.6	2,295
263	Genome-Wide Association Studies. Cold Spring Harbor Protocols, 2009, 2009, pdb.top66.	0.3	6
264	Interaction between PON1 and population density in amyotrophic lateral sclerosis. NeuroReport, 2009, 20, 186-190.	1.2	17
265	The Role of Copy Number Variation in Susceptibility to Amyotrophic Lateral Sclerosis: Genome-Wide Association Study and Comparison with Published Loci. PLoS ONE, 2009, 4, e8175.	2.5	39
266	Birth order and the genetics of amyotrophic lateral sclerosis. Journal of Neurology, 2008, 255, 99-102.	3.6	7
267	Two cases of sudden unexpected death in epilepsy in a GEFS+ family with an <i>SCN1A</i> mutation. Epilepsia, 2008, 49, 360-365.	5.1	74
268	SOD1A4V-mediated ALS: Absence of a closely linked modifier gene and origination in Asia. Neuroscience Letters, 2008, 430, 241-245.	2.1	20
269	Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology, 2008, 70, 278-283.	1.1	108
270	TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Science, 2008, 319, 1668-1672.	12.6	2,268

#	Article	IF	CITATIONS
271	A common haplotype within the PON1 promoter region is associated with sporadic ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2008, 9, 306-314.	2.1	37
272	ALSOD: The Amyotrophic Lateral Sclerosis Online Database. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2008, 9, 249-250.	2.1	128
273	Association study on glutathione Sâ€transferase omega 1 and 2 and familial ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2008, 9, 81-84.	2.1	19
274	New <i>VAPB</i> deletion variant and exclusion of <i>VAPB</i> mutations in familial ALS. Neurology, 2008, 70, 1179-1185.	1.1	50
275	Molecular Insights and Therapeutic Targets in Amyotrophic Lateral Sclerosis. CNS and Neurological Disorders - Drug Targets, 2008, 7, 11-19.	1.4	19
276	Cortical 5-HT1A receptor binding in patients with homozygous D90A SOD1 vs sporadic ALS. Neurology, 2007, 68, 1233-1235.	1.1	21
277	Volumetric cortical loss in sporadic and familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 343-347.	2.1	45
278	The Heterogeneity of Amyotrophic Lateral Sclerosis: A Possible Explanation of Treatment Failure. Current Medicinal Chemistry, 2007, 14, 3185-3200.	2.4	62
279	Three soccer playing friends with simultaneous amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 177-179.	2.1	31
280	Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain, 2007, 130, 2292-2301.	7.6	32
281	Amyotrophic Lateral Sclerosis in South-East England: A Population-Based Study. Neuroepidemiology, 2007, 29, 44-48.	2.3	127
282	Chapter 14 Familial amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 279-300.	1.8	3
283	The multidisciplinary clinic, quality of life and survival in motor neuron disease. Journal of Neurology, 2007, 254, 1118-1118.	3.6	3
284	Cortical involvement in four cases of primary lateral sclerosis using [11C]-flumazenil PET. Journal of Neurology, 2007, 254, 1033-1036.	3.6	42
285	Age at onset in sod1-mediated amyotrophic lateral sclerosis shows familiality. Neurogenetics, 2007, 8, 235-236.	1.4	14
286	Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain, 2006, 129, 868-876.	7.6	363
287	Amyotrophic lateral sclerosis as a complex genetic disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 973-985.	3.8	70
288	Special issue on ALS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 955.	3.8	0

0

#	Article	IF	CITATIONS
289	Amyotrophic lateral sclerosis in an urban setting. Journal of Neurology, 2006, 253, 1642-1643.	3.6	181
290	Susceptibility genes in sporadic ALS: Separating the wheat from the chaff by international collaboration. Neurology, 2006, 67, 738-739.	1.1	10
291	A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology, 2006, 66, 839-844.	1.1	334
292	Survival of patients with ALS following institution of enteral feeding is related to preâ€procedure oximetry: A retrospective review of 98 patients in a single centre. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2006, 7, 16-21.	2.1	57
293	Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder?. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 750-753.	1.9	96
294	Electrical injury and amyotrophic lateral sclerosis: a systematic review of the literature. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 450-453.	1.9	45
295	Trouble on the pitch: are professional football players at increased risk of developing amyotrophic lateral sclerosis?. Brain, 2005, 128, 451-453.	7.6	34
296	Genotyping DNA pools on microarrays: Tackling the QTL problem of large samples and large numbers of SNPs. BMC Genomics, 2005, 6, 52.	2.8	60
297	A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population. Human Genetics, 2005, 118, 499-500.	3.8	85
298	The genetics of amyotrophic lateral sclerosis. , 2005, , 758-771.		0
299	Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1279-1285.	1.9	73
300	Mills' and other isolated upper motor neurone syndromes: in vivo study with 11C-(R)-PK11195 PET. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 871-874.	1.9	50
301	A central resource for accurate allele frequency estimation from pooled DNA genotyped on DNA microarrays. Nucleic Acids Research, 2005, 33, e25-e25.	14.5	39
302	Distinct cerebral lesions in sporadic and â€~D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain, 2005, 128, 1323-1329.	7.6	134
303	[11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain, 2005, 128, 896-905.	7.6	92
304	Comparison of two percutaneous radiological gastrostomy tubes in the nutritional management of ALS patients. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 177-181.	2.1	21
305	Inherited Motor Neuron Degeneration. , 2005, , 1595-1601.		0

306 Sporadic Motor Neuron Degeneration. , 2005, , 1533-1544.

#	Article	IF	CITATIONS
307	MaGIC: a program to generate targeted marker sets for genome-wide association studies. BioTechniques, 2004, 37, 996-999.	1.8	10
308	Genotyping Pooled DNA on Microarrays: A Systematic Genome Screen of Thousands of SNPs in Large Samples to Detect QTLs for Complex Traits. Behavior Genetics, 2004, 34, 549-555.	2.1	89
309	Variants in the ALS2 gene are not associated with sporadic amyotrophic lateral sclerosis. Neurogenetics, 2003, 4, 221-222.	1.4	18
310	Ciliary neurotrophic factor genotype does not influence clinical phenotype in amyotrophic lateral sclerosis. Annals of Neurology, 2003, 54, 130-134.	5.3	37
311	Neurofilaments and neurological disease. BioEssays, 2003, 25, 346-355.	2.5	162
312	Riluzole and Motor Neurone Disease. Practical Neurology, 2003, 3, 160-169.	1.1	3
313	VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genetics, 2003, 34, 383-394.	21.4	794
314	Two Families with Familial Amyotrophic Lateral Sclerosis Are Linked to a Novel Locus on Chromosome 16q. American Journal of Human Genetics, 2003, 73, 390-396.	6.2	76
315	Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990-2002. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 995-997.	1.9	119
316	Prognostic modelling of therapeutic interventions in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2002, 3, 15-21.	1.2	82
317	Early symptom progression rate is related to ALS outcome: A prospective population-based study. Neurology, 2002, 59, 2012-2013.	1.1	8
318	D90A-SOD1 mediated amyotrophic lateral sclerosis: A single founder for all cases with evidence for aCis-acting disease modifier in the recessive haplotype. Human Mutation, 2002, 20, 473-473.	2.5	90
319	Progress in the pathogenesis of amyotrophic lateral sclerosis. Current Neurology and Neuroscience Reports, 2001, 1, 69-76.	4.2	54
320	Recent advances in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2000, 13, 397-405.	3.6	112
321	Extramotor involvement in ALS: PET studies with the GABAA ligand [11C]flumazenil. Brain, 2000, 123, 2289-2296.	7.6	166
322	Detection of reverse transcriptase activity in the serum of patients with motor neurone disease. Journal of Medical Virology, 2000, 61, 527-532.	5.0	73
323	Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Human Molecular Genetics, 1999, 8, 157-164.	2.9	303
324	Mutations in all five exons of <i>SODâ€l </i> may cause ALS. Annals of Neurology, 1998, 43, 390-394.	5.3	153

#	Article	IF	CITATIONS
325	Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Human Molecular Genetics, 1998, 7, 2045-2050.	2.9	132
326	Lack of evidence for HTLV tax-rex DNA in motor neurone disease. Journal of the Neurological Sciences, 1997, 153, 86-90.	0.6	13
327	Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: Analysis of 155 cases and identification of novel insertion mutation. Annals of Neurology, 1997, 42, 803-807.	5.3	115
328	No Association between Parkinson's Disease and Low-Activity Alleles of CatecholO-Methyltransferase. Biochemical and Biophysical Research Communications, 1996, 228, 780-784.	2.1	83
329	Association of apolipoprotein E ∈4 allele with bulbar-onset motor neuron disease. Lancet, The, 1996, 347, 159-160.	13.7	111
330	Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: Homozygous naip deletion in a sporadic case. Annals of Neurology, 1996, 39, 796-800.	5.3	54
331	lssues & opinion. Neurofilaments, free radicals, excitotoxins, and amyotrophic lateral sclerosis. Muscle and Nerve, 1995, 18, 540-545.	2.2	21
332	Amyotrophic lateral sclerosis and other disorders of the lower motor neuron. , 0, , 136-147.		0
333	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4
334	Mutations in the Glycosyltransferase Domain of GLT8D1 Cause Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	0