Pierre Thibault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/475213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noncoding regions are the main source of targetable tumor-specific antigens. Science Translational Medicine, 2018, 10, .	12.4	374
2	Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nature Communications, 2016, 7, 10238.	12.8	210
3	MHC class l–associated peptides derive from selective regions of the human genome. Journal of Clinical Investigation, 2016, 126, 4690-4701.	8.2	188
4	The MHC class I peptide repertoire is molded by the transcriptome. Journal of Experimental Medicine, 2008, 205, 595-610.	8.5	174
5	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell, 2019, 36, 84-99.e8.	16.8	163
6	PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discovery, 2018, 8, 866-883.	9.4	141
7	A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells. Molecular and Cellular Proteomics, 2011, 10, S1-S15.	3.8	125
8	Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Reports, 2021, 34, 108815.	6.4	120
9	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	14.5	119
10	Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nature Communications, 2014, 5, 5409.	12.8	115
11	The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Molecular Systems Biology, 2011, 7, 533.	7.2	113
12	Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nature Communications, 2014, 5, 3600.	12.8	111
13	Improvement in Peptide Detection for Proteomics Analyses Using NanoLCâ [~] 'MS and High-Field Asymmetry Waveform Ion Mobility Mass Spectrometry. Analytical Chemistry, 2005, 77, 2176-2186.	6.5	108
14	Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification. Nature Communications, 2017, 8, 14109.	12.8	107
15	A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements. Molecular and Cellular Proteomics, 2018, 17, 2051-2067.	3.8	106
16	Enhanced Sensitivity in Proteomics Experiments Using FAIMS Coupled with a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Journal of Proteome Research, 2009, 8, 3355-3366.	3.7	92
17	Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7786-7791.	7.1	86
18	A Cell-Signaling Network Temporally Resolves Specific versus Promiscuous Phosphorylation. Cell Reports, 2015, 10, 1202-1214.	6.4	84

#	Article	IF	CITATIONS
19	Immunogenic stress and death of cancer cells: Contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunological Reviews, 2017, 280, 165-174.	6.0	82
20	Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2918-27.	7.1	70
21	MHC l–associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood, 2012, 119, e181-e191.	1.4	62
22	The nature of self for T cells—a systems-level perspective. Current Opinion in Immunology, 2015, 34, 1-8.	5.5	61
23	Engineering the Pattern of Protein Glycosylation Modulates the Thermostability of a GH11 Xylanase. Journal of Biological Chemistry, 2013, 288, 25522-25534.	3.4	59
24	Comparison of the MHC I Immunopeptidome Repertoire of B ell Lymphoblasts Using Two Isolation Methods. Proteomics, 2018, 18, e1700251.	2.2	59
25	Combined Enzymatic and Data Mining Approaches for Comprehensive Phosphoproteome Analyses. Molecular and Cellular Proteomics, 2008, 7, 645-660.	3.8	58
26	Improvement of Phosphoproteome Analyses Using FAIMS and Decision Tree Fragmentation. Application to the Insulin Signaling Pathway in Drosophila melanogaster S2 Cells. Journal of Proteome Research, 2012, 11, 927-940.	3.7	58
27	Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity, 2021, 54, 737-752.e10.	14.3	58
28	Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry. Journal of Proteome Research, 2016, 15, 4653-4665.	3.7	55
29	Phosphoproteome dynamics of <i>Saccharomyces cerevisiae</i> under heat shock and cold stress. Molecular Systems Biology, 2015, 11, 813.	7.2	54
30	Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific Antigens in Ovarian Cancer. Cancer Immunology Research, 2020, 8, 544-555.	3.4	48
31	Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nature Communications, 2020, 11, 834.	12.8	47
32	UM171 Preserves Epigenetic Marks that Are Reduced in Ex Vivo Culture of Human HSCs via Potentiation of the CLR3-KBTBD4 Complex. Cell Stem Cell, 2021, 28, 48-62.e6.	11.1	44
33	Extending the Comprehensiveness of Immunopeptidome Analyses Using Isobaric Peptide Labeling. Analytical Chemistry, 2020, 92, 9194-9204.	6.5	43
34	Targeted Identification of SUMOylation Sites in Human Proteins Using Affinity Enrichment and Paralog-specific Reporter Ions. Molecular and Cellular Proteomics, 2013, 12, 2536-2550.	3.8	42
35	ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules. Journal of Immunology, 2016, 197, 1035-1043.	0.8	41
36	Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Seminars in Cell and Developmental Biology, 2012, 23, 843-853.	5.0	40

#	Article	IF	CITATIONS
37	H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discovery, 2020, 10, 1968-1987.	9.4	40
38	Imipridone Anticancer Compounds Ectopically Activate the ClpP Protease and Represent a New Scaffold for Antibiotic Development. Genetics, 2020, 214, 1103-1120.	2.9	36
39	Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1. Nature Communications, 2018, 9, 4385.	12.8	35
40	Enhancement of mass spectrometry performance for proteomic analyses using highâ€field asymmetric waveform ion mobility spectrometry (FAIMS). Journal of Mass Spectrometry, 2015, 50, 1181-1195.	1.6	34
41	Determination of the primary structure of peptides using fast atom bombardment mass spectrometry. Biological Mass Spectrometry, 1990, 19, 13-26.	0.5	31
42	UBAP2L is a novel BMI1-interacting protein essential for hematopoietic stem cell activity. Blood, 2014, 124, 2362-2369.	1.4	30
43	The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers, 2020, 12, 2607.	3.7	30
44	Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Medicine, 2020, 12, 40.	8.2	30
45	Interplay Between Histone H3 Lysine 56 Deacetylation and Chromatin Modifiers in Response to DNA Damage. Genetics, 2015, 200, 185-205.	2.9	29
46	Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). Journal of Proteome Research, 2019, 18, 2129-2138.	3.7	28
47	Displacement of N/Q-rich Peptides on TiO ₂ Beads Enhances the Depth and Coverage of Yeast Phosphoproteome Analyses. Journal of Proteome Research, 2013, 12, 2905-2913.	3.7	27
48	Biochemical properties of glycosylation and characterization of a histidine acid phosphatase (phytase) expressed in Pichia pastoris. Protein Expression and Purification, 2014, 99, 43-49.	1.3	26
49	Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Molecular and Cellular Proteomics, 2017, 16, 663-679.	3.8	26
50	Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach. Nature Protocols, 2017, 12, 2354-2355.	12.0	26
51	Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9. Scientific Reports, 2018, 8, 7754.	3.3	26
52	Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10028-10033.	7.1	25
53	Unraveling Site-Specific and Combinatorial Histone Modifications Using High-Resolution Mass Spectrometry in Histone Deacetylase Mutants of Fission Yeast. Journal of Proteome Research, 2016, 15, 2132-2142.	3.7	23
54	Promyelocytic Leukemia Protein (PML) Requirement for Interferon-induced Global Cellular SUMOylation. Molecular and Cellular Proteomics, 2018, 17, 1196-1208.	3.8	22

#	Article	IF	CITATIONS
55	A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Frontiers in Immunology, 2020, 11, 583287.	4.8	22
56	A novel p53 regulator, C16ORF72/TAPR1, buffers against telomerase inhibition. Aging Cell, 2021, 20, e13331.	6.7	20
57	Immunopeptidomic Analyses of Colorectal Cancers With and Without Microsatellite Instability. Molecular and Cellular Proteomics, 2022, 21, 100228.	3.8	20
58	Extended Synaptotagmin 1 Interacts with Herpes Simplex Virus 1 Glycoprotein M and Negatively Modulates Virus-Induced Membrane Fusion. Journal of Virology, 2018, 92, .	3.4	18
59	Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses. Journal of the American Society for Mass Spectrometry, 2018, 29, 1111-1124.	2.8	17
60	Cross-talk between SUMOylation and ISGylation in response to interferon. Cytokine, 2020, 129, 155025.	3.2	17
61	Discovery of protein acetylation patterns by deconvolution of peptide isomer mass spectra. Nature Communications, 2015, 6, 8648.	12.8	16
62	CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization. Journal of Proteome Research, 2017, 16, 2645-2652.	3.7	16
63	Interferon, restriction factors and SUMO pathways. Cytokine and Growth Factor Reviews, 2020, 55, 37-47.	7.2	16
64	Synergistic action of co-expressed xylanase/laccase mixtures against milled sugar cane bagasse. Process Biochemistry, 2014, 49, 1152-1161.	3.7	15
65	Crosstalk Between SUMO and Ubiquitin-Like Proteins: Implication for Antiviral Defense. Frontiers in Cell and Developmental Biology, 2021, 9, 671067.	3.7	15
66	Sample Collection Method Bias Effects in Quantitative Phosphoproteomics. Journal of Proteome Research, 2015, 14, 2998-3004.	3.7	13
67	Dynamic Phosphoproteomics Uncovers Signaling Pathways Modulated by Anti-oncogenic Sphingolipid Analogs. Molecular and Cellular Proteomics, 2019, 18, 408-422.	3.8	12
68	MAPDP: A Cloud-Based Computational Platform for Immunopeptidomics Analyses. Journal of Proteome Research, 2020, 19, 1873-1881.	3.7	11
69	Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer. Analytical Chemistry, 2021, 93, 9817-9825.	6.5	11
70	Cyclin B3 activates the Anaphase-Promoting Complex/Cyclosome in meiosis and mitosis. PLoS Genetics, 2020, 16, e1009184.	3.5	11
71	Rejection of Leukemic Cells Requires Antigen-Specific TÂCells with High Functional Avidity. Biology of Blood and Marrow Transplantation, 2014, 20, 37-45.	2.0	10
72	The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLoS Biology, 2022, 20, e3001548.	5.6	10

#	Article	IF	CITATIONS
73	MhcVizPipe: A Quality Control Software for Rapid Assessment of Small- to Large-Scale Immunopeptidome Datasets. Molecular and Cellular Proteomics, 2022, 21, 100178.	3.8	9
74	Early defects in mucopolysaccharidosis type IIIC disrupt excitatory synaptic transmission. JCI Insight, 2021, 6, .	5.0	8
75	In vitro assay to determine SUMOylation sites on protein substrates. Nature Protocols, 2016, 11, 387-397.	12.0	7
76	Proteomics of Herpes Simplex Virus 1 Nuclear Capsids. Journal of Virology, 2021, 95, .	3.4	6
77	Proteomic strategies for characterizing ubiquitin-like modifications. Nature Reviews Methods Primers, 2021, 1, .	21.2	6
78	Efficient sample processing for proteomics applications—Are we there yet?. Molecular Systems Biology, 2014, 10, 758.	7.2	5
79	Global and Site-Specific Changes in 5-Methylcytosine and 5-Hydroxymethylcytosine after Extended Post-mortem Interval. Frontiers in Genetics, 2016, 7, 120.	2.3	5
80	Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment. Journal of Proteome Research, 2020, 19, 1999-2010.	3.7	4
81	Combined Enrichment/Enzymatic Approach To Study Tightly Clustered Multisite Phosphorylation on Ser-Rich Domains. Journal of Proteome Research, 2018, 17, 3050-3060.	3.7	3
82	Headâ€toâ€tail cyclization of side chainâ€protected linear peptides to recapitulate geneticallyâ€encoded cyclized peptides. Peptide Science, 2022, 114, .	1.8	3
83	Immunopeptidomics: Reading the Immune Signal That Defines Self From Nonself. Molecular and Cellular Proteomics, 2022, 21, 100234.	3.8	3
84	A bacterium-derived, cancer-associated immunopeptidome. Oncolmmunology, 2021, 10, 1918373.	4.6	2
85	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of Mitochondrial Vulnerability in Acute Myeloid Leukemia. Blood, 2018, 132, 910-910.	1.4	1
86	Dedication to Robert Kinnear Boyd. Rapid Communications in Mass Spectrometry, 2006, 20, 1487-1491.	1.5	0
87	Proteome dynamics in health and disease. Journal of Proteomics, 2015, 118, 1.	2.4	0
88	Corrigendum to "Introduction to the HUPO 2015 Special Issue―[J. Proteomics (2016) 1–2]. Journal of Proteomics, 2017, 152, 355-356.	2.4	0
89	Ubap2l-Bmi-1-Rnf2 Define a Novel Polycomb Complex Essential For Self-Renewal Of Hematopoietic Stem Cells. Blood, 2013, 122, 736-736.	1.4	0
90	CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation. PLoS Computational Biology, 2021, 17, e1009482.	3.2	0