Ian Mohr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4751521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singleâ€cell transcriptomics identifies Gadd45b as a regulator of herpesvirusâ€reactivating neurons. EMBO Reports, 2022, 23, e53543.	4.5	16
2	Control of animal virus replication by RNA adenosine methylation. Advances in Virus Research, 2022, , .	2.1	0
3	Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathogens, 2022, 18, e1010099.	4.7	11
4	DRUMMER—rapid detection of RNA modifications through comparative nanopore sequencing. Bioinformatics, 2022, 38, 3113-3115.	4.1	26
5	Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes and Development, 2022, 36, 108-132.	5.9	8
6	An elF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Reports, 2022, 39, 110767.	6.4	8
7	Targeting the m ⁶ A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.	5.9	70
8	Widespread remodeling of the m ⁶ A RNA-modification landscape by a viral regulator of RNA processing and export. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
9	Platelets amplify endotheliopathy in COVID-19. Science Advances, 2021, 7, eabh2434.	10.3	78
10	Platelets contribute to disease severity in COVIDâ€19. Journal of Thrombosis and Haemostasis, 2021, 19, 3139-3153.	3.8	111
11	Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus–encoded ribosome-associated protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
12	Using Primary SCG Neuron Cultures to Study Molecular Determinants of HSV-1 Latency and Reactivation. Methods in Molecular Biology, 2020, 2060, 263-277.	0.9	2
13	Translational Control in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033001.	5.5	128
14	Repression of eEF2K transcription by NF-κB tunes translation elongation to inflammation and dsDNA-sensing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22583-22590.	7.1	26
15	TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency. Molecular Cell, 2019, 74, 466-480.e4.	9.7	31
16	Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nature Communications, 2019, 10, 754.	12.8	200
17	Ribosome biogenesis restricts innate immune responses to virus infection and DNA. ELife, 2019, 8, .	6.0	61
18	Inhibition of ULK1 and Beclin1 by an α-herpesvirus Akt-like Ser/Thr kinase limits autophagy to stimulate virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26941-26950.	7.1	28

Ian Mohr

#	Article	IF	CITATIONS
19	Going the Distance: Optimizing RNA-Seq Strategies for Transcriptomic Analysis of Complex Viral Genomes. Journal of Virology, 2019, 93, .	3.4	34
20	RNA m ⁶ A modification enzymes shape innate responses to DNA by regulating interferon β. Genes and Development, 2018, 32, 1472-1484.	5.9	180
21	Remodeling mTORC1 Responsiveness to Amino Acids by the Herpes Simplex Virus UL46 and Us3 Gene Products Supports Replication during Nutrient Insufficiency. Journal of Virology, 2018, 92, .	3.4	14
22	Defining the Role of Stress Granules in Innate Immune Suppression by the Herpes Simplex Virus 1 Endoribonuclease VHS. Journal of Virology, 2018, 92, .	3.4	51
23	Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus. Molecular Therapy - Oncolytics, 2018, 8, 71-81.	4.4	11
24	lmmune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen. Cell Reports, 2017, 18, 1312-1323.	6.4	43
25	Restriction of Human Cytomegalovirus Replication by ISG15, a Host Effector Regulated by cGAS-STING Double-Stranded-DNA Sensing. Journal of Virology, 2017, 91, .	3.4	40
26	Subversion of Host Responses to Energy Insufficiency by Us3 Supports Herpes Simplex Virus 1 Replication during Stress. Journal of Virology, 2017, 91, .	3.4	13
27	Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology, 2017, 512, 124-131.	2.4	5
28	Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens, 2017, 6, 24.	2.8	42
29	Evolutionary clash between myxoma virus and rabbit PKR in Australia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3912-3914.	7.1	6
30	A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annual Review of Virology, 2016, 3, 283-307.	6.7	113
31	CD8+ T-cell Immune Evasion Enables Oncolytic Virus Immunotherapy. EBioMedicine, 2016, 5, 59-67.	6.1	29
32	Closing in on the causes of host shutoff. ELife, 2016, 5, .	6.0	7
33	Cellular 5′-3′ mRNA Exonuclease Xrn1 Controls Double-Stranded RNA Accumulation and Anti-Viral Responses. Cell Host and Microbe, 2015, 17, 332-344.	11.0	97
34	Global Reprogramming of the Cellular Translational Landscape Facilitates Cytomegalovirus Replication. Cell Reports, 2014, 6, 9-17.	6.4	46
35	Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e. Genes and Development, 2014, 28, 835-840.	5.9	40
36	Co-opting the Fanconi Anemia Genomic Stability Pathway Enables Herpesvirus DNA Synthesis and Productive Growth. Molecular Cell, 2014, 55, 111-122.	9.7	24

Ian Mohr

#	Article	IF	CITATIONS
37	Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons. PLoS Pathogens, 2012, 8, e1002540.	4.7	133
38	Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5627-5632.	7.1	35
39	A cultured affair: HSV latency and reactivation in neurons. Trends in Microbiology, 2012, 20, 604-611.	7.7	130
40	Host Translation at the Nexus of Infection and Immunity. Cell Host and Microbe, 2012, 12, 470-483.	11.0	130
41	Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nature Immunology, 2012, 13, 543-550.	14.5	114
42	Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes and Development, 2012, 26, 1527-1532.	5.9	72
43	Translational Control of the Abundance of Cytoplasmic Poly(A) Binding Protein in Human Cytomegalovirus-Infected Cells. Journal of Virology, 2011, 85, 156-164.	3.4	30
44	Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes and Development, 2010, 24, 2627-2639.	5.9	119
45	Nature and Duration of Growth Factor Signaling through Receptor Tyrosine Kinases Regulates HSV-1 Latency in Neurons. Cell Host and Microbe, 2010, 8, 320-330.	11.0	140
46	Maintenance of Endoplasmic Reticulum (ER) Homeostasis in Herpes Simplex Virus Type 1-Infected Cells through the Association of a Viral Glycoprotein with PERK, a Cellular ER Stress Sensor. Journal of Virology, 2007, 81, 3377-3390.	3.4	108
47	Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Research, 2006, 119, 89-99.	2.2	38
48	To replicate or not to replicate: achieving selective oncolytic virus replication in cancer cells through translational control. Oncogene, 2005, 24, 7697-7709.	5.9	32
49	Regulation of the Translation Initiation Factor eIF4F by Multiple Mechanisms in Human Cytomegalovirus-Infected Cells. Journal of Virology, 2005, 79, 8057-8064.	3.4	108
50	Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes and Development, 2004, 18, 660-672.	5.9	166
51	NEUTRALIZING INNATE HOST DEFENSES TO CONTROL VIRAL TRANSLATION IN HSV-1 INFECTED CELLS. International Reviews of Immunology, 2004, 23, 199-220.	3.3	40
52	Association of the Herpes Simplex Virus Type 1 Us11 Gene Product with the Cellular Kinesin Light-Chain-Related Protein PAT1 Results in the Redistribution of Both Polypeptides. Journal of Virology, 2003, 77, 9192-9203.	3.4	84
53	Genetic metamorphosis of herpes simplex virus-1 into a biological therapeutic for human cancer. Expert Opinion on Biological Therapy, 2003, 3, 113-125.	3.1	6