
## **Daniel Grosvenor**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750857/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                     | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.                                                                                                                                                           | 4.9  | 44        |
| 2  | Evaluating the Lagrangian Evolution of Subtropical Low Clouds in GCMs Using Observations: Mean<br>Evolution, Time Scales, and Responses to Predictors. Journals of the Atmospheric Sciences, 2021, 78,<br>353-372.                                                                          | 1.7  | 1         |
| 3  | The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6.<br>Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002126.                                                                                                                  | 3.8  | 8         |
| 4  | The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18998-19006.                                                                                             | 7.1  | 51        |
| 5  | The value of remote marine aerosol measurements for constraining radiative forcing uncertainty.<br>Atmospheric Chemistry and Physics, 2020, 20, 10063-10072.                                                                                                                                | 4.9  | 27        |
| 6  | Development of aerosol activation in the double-moment Unified Model and evaluation with CLARIFY measurements. Atmospheric Chemistry and Physics, 2020, 20, 10997-11024.                                                                                                                    | 4.9  | 7         |
| 7  | Untangling causality in midlatitude aerosol–cloud adjustments. Atmospheric Chemistry and Physics,<br>2020, 20, 4085-4103.                                                                                                                                                                   | 4.9  | 25        |
| 8  | Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations.<br>Geoscientific Model Development, 2020, 13, 6383-6423.                                                                                                                                    | 3.6  | 83        |
| 9  | The decomposition of cloud–aerosol forcing in the UK Earth System Model (UKESM1). Atmospheric Chemistry and Physics, 2020, 20, 15681-15724.                                                                                                                                                 | 4.9  | 7         |
| 10 | Assessment of aerosol–cloud–radiation correlations in satellite observations, climate models and reanalysis. Climate Dynamics, 2019, 52, 4371-4392.                                                                                                                                         | 3.8  | 35        |
| 11 | Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2687-2692.                                                                                                     | 7.1  | 156       |
| 12 | Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data.<br>Atmospheric Chemistry and Physics, 2018, 18, 2035-2047.                                                                                                                             | 4.9  | 44        |
| 13 | Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1. Journal of Advances in Modeling Earth Systems, 2018, 10, 2786-2805.                                                                                                                                       | 3.8  | 106       |
| 14 | Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of<br>Knowledge and Perspectives. Reviews of Geophysics, 2018, 56, 409-453.                                                                                                                    | 23.0 | 185       |
| 15 | Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals. Atmospheric Measurement Techniques, 2018, 11, 4273-4289. | 3.1  | 10        |
| 16 | Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016.<br>International Journal of Climatology, 2018, 38, 5050-5076.                                                                                                                                  | 3.5  | 34        |
| 17 | Large simulated radiative effects of smoke in the south-east Atlantic. Atmospheric Chemistry and Physics, 2018, 18, 15261-15289.                                                                                                                                                            | 4.9  | 61        |
| 18 | Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations.<br>Atmospheric Chemistry and Physics, 2018, 18, 5821-5846.                                                                                                                                    | 4.9  | 28        |

DANIEL GROSVENOR

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The global aerosolâ€cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. Journal of<br>Geophysical Research D: Atmospheres, 2017, 122, 1779-1796.                                                                       | 3.3  | 81        |
| 20 | Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.                                                                                                                                     | 27.8 | 191       |
| 21 | The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study. Atmospheric Chemistry and Physics, 2017, 17, 5155-5183. | 4.9  | 51        |
| 22 | Mixedâ€phase cloud physics and Southern Ocean cloud feedback in climate models. Journal of<br>Geophysical Research D: Atmospheres, 2015, 120, 9539-9554.                                                                                  | 3.3  | 120       |
| 23 | Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Science<br>Advances, 2015, 1, e1500157.                                                                                                            | 10.3 | 144       |
| 24 | Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part II: Phase Changes and Low<br>Cloud Feedback*. Journal of Climate, 2014, 27, 8858-8868.                                                                            | 3.2  | 61        |
| 25 | Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties*. Journal of Climate, 2014, 27, 8836-8857.                                                               | 3.2  | 47        |
| 26 | The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds. Atmospheric Chemistry and Physics, 2014, 14, 7291-7321.                                                           | 4.9  | 139       |
| 27 | Downslope föhn winds over the Antarctic Peninsula and their effect on the Larsen ice shelves.<br>Atmospheric Chemistry and Physics, 2014, 14, 9481-9509.                                                                                  | 4.9  | 33        |
| 28 | Long-term measurements of cloud droplet concentrations and aerosol–cloud interactions in<br>continental boundary layer clouds. Tellus, Series B: Chemical and Physical Meteorology, 2013, 65,<br>20138.                                   | 1.6  | 30        |
| 29 | In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf. Atmospheric Chemistry and Physics, 2012, 12, 11275-11294.                                                            | 4.9  | 39        |
| 30 | Tropospheric clouds in Antarctica. Reviews of Geophysics, 2012, 50, .                                                                                                                                                                     | 23.0 | 124       |
| 31 | A study of the effect of overshooting deep convection on the water content of the TTL and lower<br>stratosphere from Cloud Resolving Model simulations. Atmospheric Chemistry and Physics, 2007, 7,<br>4977-5002.                         | 4.9  | 77        |