
Teun Munnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750717/publications.pdf Version: 2024-02-01

TELIN MUNNUK

#	Article	IF	CITATIONS
1	A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell, 2022, 34, 302-332.	6.6	22
2	DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytologist, 2022, 233, 2185-2202.	7.3	8
3	EARLY RESPONSE TO DEHYDRATION 7 Remodels Cell Membrane Lipid Composition during Cold Stress in Arabidopsis. Plant and Cell Physiology, 2021, 62, 80-91.	3.1	27
4	Hot topic: Thermosensing in plants. Plant, Cell and Environment, 2021, 44, 2018-2033.	5.7	96
5	Dynamic membranes—the indispensable platform for plant growth, signaling, and development. Plant Physiology, 2021, 185, 547-549.	4.8	8
6	Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. Biology and Fertility of Soils, 2021, 57, 731-737.	4.3	5
7	Inducible depletion of PI(4,5)P2 by the synthetic iDePP system in Arabidopsis. Nature Plants, 2021, 7, 587-597.	9.3	29
8	Attracted to membranes: lipid-binding domains in plants. Plant Physiology, 2021, 185, 707-723.	4.8	24
9	Biochemical characterization of phospholipases C from Coffea arabica in response to aluminium stress. Journal of Inorganic Biochemistry, 2020, 204, 110951.	3.5	4
10	AUTOPHAGY-RELATED14 and Its Associated Phosphatidylinositol 3-Kinase Complex Promote Autophagy in Arabidopsis. Plant Cell, 2020, 32, 3939-3960.	6.6	36
11	Lipid kinases PIP5K7 and PIP5K9 are required for polyamineâ€ŧriggered K ⁺ efflux in Arabidopsis roots. Plant Journal, 2020, 104, 416-432.	5.7	28
12	Science and application of strigolactones. New Phytologist, 2020, 227, 1001-1011.	7.3	60
13	The BIR2/BIR3-Associated Phospholipase DÎ ³ 1 Negatively Regulates Plant Immunity. Plant Physiology, 2020, 183, 371-384.	4.8	14
14	Extracellular Spermine Triggers a Rapid Intracellular Phosphatidic Acid Response in Arabidopsis, Involving PLDδActivation and Stimulating Ion Flux. Frontiers in Plant Science, 2019, 10, 601.	3.6	19
15	Arabidopsis phospholipase Dα1 and Dδ oppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany, 2018, 69, 3675-3688.	4.8	23
16	Cellular Dynamics: Cellular Systems in the Time Domain. Plant Physiology, 2018, 176, 12-15.	4.8	0
17	Arabidopsis Phospholipase C3 is Involved in Lateral Root Initiation and ABA Responses in Seed Germination and Stomatal Closure. Plant and Cell Physiology, 2018, 59, 469-486.	3.1	39
18	Vacuolar Trafficking Protein VPS38 Is Dispensable for Autophagy. Plant Physiology, 2018, 176, 1559-1572.	4.8	34

Τευν Μυννικ

#	Article	IF	CITATIONS
19	Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. Frontiers in Plant Science, 2018, 9, 1721.	3.6	16
20	Arabidopsis inositol phosphate kinases <scp>IPK</scp> 1 and <scp>ITPK</scp> 1 constitute a metabolic pathway in maintaining phosphate homeostasis. Plant Journal, 2018, 95, 613-630.	5.7	79
21	Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. Plant and Cell Physiology, 2018, 59, 2004-2019.	3.1	41
22	<i>Polyamine oxidase 5</i> lossâ€ofâ€function mutations in <i>Arabidopsis thaliana</i> trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell and Environment, 2017, 40, 527-542.	5.7	66
23	Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas. Phytochemistry, 2017, 135, 64-72.	2.9	28
24	In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. Plant and Cell Physiology, 2017, 58, 1196-1207.	3.1	33
25	Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta, 2017, 245, 717-728.	3.2	32
26	The regulation of cell polarity by lipid transfer proteins of the SEC14 family. Current Opinion in Plant Biology, 2017, 40, 158-168.	7.1	29
27	<i>Arabidopsis</i> EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit. Journal of Integrative Plant Biology, 2017, 59, 851-865.	8.5	25
28	Phospholipase C2 Affects MAMP-Triggered Immunity by Modulating ROS Production. Plant Physiology, 2017, 175, 970-981.	4.8	57
29	Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in <i>Arabidopsis thaliana</i> roots. Development (Cambridge), 2017, 144, 3578-3589.	2.5	27
30	Visualization of Phosphatidylinositol 3,5-Bisphosphate Dynamics by a Tandem ML1N-Based Fluorescent Protein Probe in Arabidopsis. Plant and Cell Physiology, 2017, 58, 1185-1195.	3.1	27
31	Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2709-2716.	2.6	74
32	Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications, 2016, 7, 11710.	12.8	98
33	Inhibition of phosphatidylinositol 3,5-bisphosphate production has pleiotropic effects on various membrane trafficking routes in Arabidopsis. Plant and Cell Physiology, 2016, 58, pcw164.	3.1	14
34	Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiology, 2015, 169, pp.01368.2015.	4.8	54
35	The diversity of algal phospholipase D homologs revealed by biocomputational analysis. Journal of Phycology, 2015, 51, 943-962.	2.3	13
36	VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP ₈ and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.	6.6	153

#	Article	IF	CITATIONS
37	Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development (Cambridge), 2015, 142, 1437-46.	2.5	99
38	ldentification and functional characterization of the <scp><i>A</i></scp> <i>rabidopsis</i> â€ <scp>Snf</scp> 1â€related protein kinase <scp>SnRK</scp> 2.4 phosphatidic acidâ€binding domain. Plant, Cell and Environment, 2015, 38, 614-624.	5.7	47
39	SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2818-2823.	7.1	62
40	Multiple vacuoles inimpaired tonoplast trafficking3mutants are independent organelles. Plant Signaling and Behavior, 2014, 9, e972113.	2.4	7
41	A multiâ€colour/multiâ€affinity marker set to visualize phosphoinositide dynamics in <scp>A</scp> rabidopsis. Plant Journal, 2014, 77, 322-337.	5.7	241
42	Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 2114-2128.	6.6	144
43	Protein Delivery to Vacuole Requires SAND Protein-Dependent Rab GTPase Conversion for MVB-Vacuole Fusion. Current Biology, 2014, 24, 1383-1389.	3.9	144
44	Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana. Frontiers in Plant Science, 2014, 5, 772.	3.6	35
45	PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. Signaling and Communication in Plants, 2014, , 27-54.	0.7	38
46	Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Current Biology, 2013, 23, 2044-2050.	3.9	270
47	Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of <i>Arabidopsis thaliana</i> roots. Biochemical Journal, 2013, 450, 573-581.	3.7	151
48	Lipid-Binding Analysis Using a Fat Blot Assay. Methods in Molecular Biology, 2013, 1009, 253-259.	0.9	25
49	Use of Phospholipase A2 for the Production of Lysophospholipids. Methods in Molecular Biology, 2013, 1009, 63-68.	0.9	1
50	Analyzing Plant Signaling Phospholipids Through 32Pi-Labeling and TLC. Methods in Molecular Biology, 2013, 1009, 3-15.	0.9	37
51	Using Genetically Encoded Fluorescent Reporters to Image Lipid Signalling in Living Plants. Methods in Molecular Biology, 2013, 1009, 283-289.	0.9	17
52	Assay of Phospholipase A Activity. Methods in Molecular Biology, 2013, 1009, 241-249.	0.9	6
53	Measuring PLD Activity In Vivo. Methods in Molecular Biology, 2013, 1009, 219-231.	0.9	17
54	Analysis and Quantification of Plant Membrane Lipids by Thin-Layer Chromatography and Gas Chromatography. Methods in Molecular Biology, 2013, 1009, 69-78.	0.9	15

#	Article	IF	CITATIONS
55	Distinguishing Phosphatidic Acid Pools from De Novo Synthesis, PLD, and DGK. Methods in Molecular Biology, 2013, 1009, 55-62.	0.9	17
56	Analysis of D3-,4-,5-Phosphorylated Phosphoinositides Using HPLC. Methods in Molecular Biology, 2013, 1009, 17-24.	0.9	7
57	Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Frontiers in Plant Science, 2013, 4, 1.	3.6	879
58	Phosphatidylinositol 4â€phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids. Plant Biology, 2012, 14, 41-49.	3.8	23
59	The Snf1â€related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant Journal, 2012, 72, 436-449.	5.7	161
60	Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 2012, 51, 208-220.	11.6	134
61	Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. Journal of Experimental Botany, 2011, 62, 2349-2361.	4.8	335
62	Understanding pollen tube growth: the hydrodynamic model versus the cell wall model. Trends in Plant Science, 2011, 16, 347-352.	8.8	51
63	Green light for polyphosphoinositide signals in plants. Current Opinion in Plant Biology, 2011, 14, 489-497.	7.1	184
64	The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis. PLoS Pathogens, 2011, 7, e1002051.	4.7	126
65	The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid. Journal of Lipid Research, 2011, 52, 2012-2020.	4.2	40
66	Imaging Lipids in Living Plants. Plant Cell Monographs, 2010, , 185-199.	0.4	5
67	Diacylglycerol Kinase. Plant Cell Monographs, 2010, , 107-114.	0.4	2
68	Osmotic stressâ€induced phosphoinositide and inositol phosphate signalling in plants. Plant, Cell and Environment, 2010, 33, 655-669.	5.7	227
69	Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant Journal, 2010, 62, 224-239.	5.7	127
70	Lipid Signaling in Plants. Plant Cell Monographs, 2010, , .	0.4	14
71	Plant Phosphatidylinositol 3-Kinase. Plant Cell Monographs, 2010, , 95-106.	0.4	11
72	Plant phospholipid signaling: "in a nutshell― Journal of Lipid Research, 2009, 50, S260-S265.	4.2	242

#	Article	IF	CITATIONS
73	Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants. Plant and Cell Physiology, 2009, 50, 78-89.	3.1	213
74	Phospholipid Signaling Responses in Salt-Stressed Rice Leaves. Plant and Cell Physiology, 2009, 50, 986-997.	3.1	140
75	Reassessing the role of phospholipase D in the <i>Arabidopsis</i> wounding response. Plant, Cell and Environment, 2009, 32, 837-850.	5.7	74
76	Imaging phosphatidylinositol 4â€phosphate dynamics in living plant cells. Plant Journal, 2009, 57, 356-372.	5.7	189
77	Heat stress activates phospholipase D and triggers PIP ₂ accumulation at the plasma membrane and nucleus. Plant Journal, 2009, 60, 10-21.	5.7	191
78	Plant PA signaling via diacylglycerol kinase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 869-875.	2.4	213
79	Uncovering hidden treasures in pollen tube growth mechanics. Trends in Plant Science, 2009, 14, 318-327.	8.8	62
80	Phosphatidylinositol 4â€phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions. Plant, Cell and Environment, 2008, 31, 1051-1062.	5.7	29
81	The <i>Arabidopsis</i> Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth. Plant Cell, 2008, 20, 367-380.	6.6	194
82	Still life. Plant Signaling and Behavior, 2008, 3, 836-838.	2.4	4
83	Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. Journal of Experimental Botany, 2008, 59, 861-873.	4.8	161
84	PA, a stress-induced short cut to switch-on ethylene signalling by switching-off CTR1?. Plant Signaling and Behavior, 2008, 3, 681-683.	2.4	17
85	Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. Journal of Experimental Botany, 2007, 58, 3905-3914.	4.8	132
86	An Electrostatic/Hydrogen Bond Switch as the Basis for the Specific Interaction of Phosphatidic Acid with Proteins. Journal of Biological Chemistry, 2007, 282, 11356-11364.	3.4	214
87	Life under pressure: hydrostatic pressure in cell growth and function. Trends in Plant Science, 2007, 12, 90-97.	8.8	138
88	Visualization of phosphatidylinositol 4,5â€bisphosphate in the plasma membrane of suspensionâ€cultured tobacco BYâ€2 cells and whole Arabidopsis seedlings. Plant Journal, 2007, 52, 1014-1026.	5.7	182
89	Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 151-159.	2.4	59
90	LePLDβ1 activation and relocalization in suspension-cultured tomato cells treated with xylanase. Plant Journal, 2006, 45, 358-368.	5.7	72

#	Article	IF	CITATIONS
91	Visualization of PtdIns3Pdynamics in living plant cells. Plant Journal, 2006, 47, 687-700.	5.7	245
92	Hydrodynamics and Cell Volume Oscillations in the Pollen Tube Apical Region are Integral Components of the Biomechanics of Nicotiana tabacum Pollen Tube Growth. Cell Biochemistry and Biophysics, 2006, 46, 209-232.	1.8	45
93	Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. Planta, 2006, 225, 393-401.	3.2	48
94	The role of phospholipase D in plant stress responses. Current Opinion in Plant Biology, 2006, 9, 515-522.	7.1	286
95	Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses. , 2006, 39, 207-237.		41
96	Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends in Plant Science, 2005, 10, 368-375.	8.8	518
97	Osmotically Induced Cell Swelling versus Cell Shrinking Elicits Specific Changes in Phospholipid Signals in Tobacco Pollen Tubes. Plant Physiology, 2004, 134, 813-823.	4.8	136
98	Phosphatidic acid accumulation is an early response in theCf-4/Avr4interaction. Plant Journal, 2004, 39, 1-12.	5.7	199
99	Isolation and identification of phosphatidic acid targets from plants. Plant Journal, 2004, 39, 527-536.	5.7	187
100	A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO Journal, 2004, 23, 572-581.	7.8	285
101	Learning the lipid language of plant signalling. Trends in Plant Science, 2004, 9, 378-384.	8.8	141
102	Plant Response to Stress: Phosphatidic Acid As a Second Messenger. , 2004, , 995-998.		4
103	Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDÎ ² 1 on elicitation with xylanase. Plant Journal, 2003, 26, 237-247.	5.7	104
104	Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. Plant Journal, 2003, 34, 595-604.	5.7	48
105	PHOSPHOLIPID-BASEDSIGNALING INPLANTS. Annual Review of Plant Biology, 2003, 54, 265-306.	18.7	551
106	Nod Factor and Elicitors Activate Different Phospholipid Signaling Pathways in Suspension-Cultured Alfalfa Cells. Plant Physiology, 2003, 132, 311-317.	4.8	109
107	Phospholipase D Activation Correlates with Microtubule Reorganization in Living Plant Cells[W]. Plant Cell, 2003, 15, 2666-2679.	6.6	225
108	Tumour necrosis factor alpha potentiates ion secretion induced by histamine in a human intestinal epithelial cell line and in mouse colon: involvement of the phospholipase D pathway. Gut, 2002, 50, 314-321.	12.1	26

Teun Munnik

#	Article	IF	CITATIONS
109	Phospholipase D in Phytophthora infestans and Its Role in Zoospore Encystment. Molecular Plant-Microbe Interactions, 2002, 15, 939-946.	2.6	45
110	Phospholipid signalling in plant defence. Current Opinion in Plant Biology, 2002, 5, 332-338.	7.1	223
111	KCl activates phospholipase D at two different concentration ranges: distinguishing between hyperosmotic stress and membrane depolarization. Plant Journal, 2002, 31, 51-60.	5.7	35
112	Phosphatidic acid: an emerging plant lipid second messenger. Trends in Plant Science, 2001, 6, 227-233.	8.8	371
113	Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Letters, 2001, 498, 172-178.	2.8	120
114	PLD pathway involved in carbachol-induced Clâ^' secretion: possible role of TNF-α. American Journal of Physiology - Cell Physiology, 2001, 280, C789-C795.	4.6	18
115	Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochemical Journal, 2001, 360, 491.	3.7	81
116	Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochemical Journal, 2001, 360, 491-498.	3.7	106
117	Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant Journal, 2001, 25, 541-548.	5.7	71
118	Phospholipid Signaling in Plants: Holding On to Phospholipase D. Science Signaling, 2001, 2001, pe42-pe42.	3.6	34
119	Nod factorâ€induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant Journal, 2001, 25, 55-65.	5.7	11
120	Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant Journal, 2001, 25, 55-65.	5.7	156
121	Water Deficit Triggers Phospholipase D Activity in the Resurrection Plant Craterostigma plantagineum. Plant Cell, 2000, 12, 111-123.	6.6	223
122	Water Deficit Triggers Phospholipase D Activity in the Resurrection Plant Craterostigma Plantagineum. Plant Cell, 2000, 12, 111.	6.6	16
123	Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant Journal, 2000, 22, 147-154.	5.7	239
124	Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry, 2000, 53, 265-270.	2.9	53
125	Chlamydomonas contains calcium stores that are mobilized when phospholipase C is activated. Planta, 2000, 210, 286-294.	3.2	24
126	Elicitation of Suspension-Cultured Tomato Cells Triggers the Formation of Phosphatidic Acid and Diacylglycerol Pyrophosphate. Plant Physiology, 2000, 123, 1507-1516.	4.8	221

Τευν Μυννικ

#	Article	IF	CITATIONS
127	Tumor necrosis factor a potentiates ion secretion induced by histamine in HT29cL.19A cells via the phospholipase D pathway. Gastroenterology, 2000, 118, A1132.	1.3	0
128	Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant Journal, 1999, 20, 381-388.	5.7	179
129	Hyperosmotic stress induces rapid synthesis of phosphatidyl- D -inositol 3,5-bisphosphate in plant cells. Planta, 1999, 208, 294-298.	3.2	132
130	Mastoparan analogues stimulate phospholipase C- and phospholipase D-activity in Chlamydomonas: a comparative study. Journal of Experimental Botany, 1999, 50, 1735-1742.	4.8	22
131	Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta, 1998, 207, 133-145.	3.2	105
132	Phospholipid signalling in plants. Lipids and Lipid Metabolism, 1998, 1389, 222-272.	2.6	389
133	Activation of phospholipase D by calmodulin antagonists and mastoparan in carnation petals. Journal of Experimental Botany, 1997, 48, 1631-1637.	4.8	42
134	Activation of phospholipase D by calmodulin antagonists and mastoparan in carnation petals. Journal of Experimental Botany, 1997, 48, 1631-1637.	4.8	14
135	Identification of Diacylglycerol Pyrophosphate as a Novel Metabolic Product of Phosphatidic Acid during G-protein Activation in Plants. Journal of Biological Chemistry, 1996, 271, 15708-15715.	3.4	129
136	G Protein Activation Stimulates Phospholipase D Signaling in Plants Plant Cell, 1995, 7, 2197-2210.	6.6	216
137	G Protein Activation Stimulates Phospholipase D Signaling in Plants. Plant Cell, 1995, 7, 2197.	6.6	96
138	Rapid turnover of polyphosphoinositides in carnation flower petals. Planta, 1994, 193, 89-98.	3.2	63
139	Rapid turnover of phosphatidylinositol 3-phosphate in the green alga <i>Chlamydomonas eugametos</i> : signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants?. Biochemical Journal, 1994, 298, 269-273.	3.7	70
140	Inositol 1,4,5-trisphosphate as fertilization signal in plants: testcase Chlamydomonas eugametos. Planta, 1993, 191, 280.	3.2	14
141	Zygote formation in the homothallic green alga Chlamydomonas monoica Strehlow. Planta, 1992, 188, 551-558.	3.2	8
142	Cyclic variations in the permeability of the cell wall ofSaccharomyces cerevisiae. Yeast, 1991, 7, 589-598.	1.7	45
143	An assay of relative cell wall porosity inSaccharomyces cerevisiae, Kluyveromyces lactis andSchizosaccharomyces pombe. Yeast, 1990, 6, 483-490.	1.7	143
144	The glucanase-soluble mannoproteins limit cell wall porosity inSaccharomyces cerevisiae. Yeast, 1990, 6, 491-499.	1.7	238