
Scott A Summers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4750504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of a Constitutively Active Akt Ser/Thr Kinase in 3T3-L1 Adipocytes Stimulates Glucose Uptake and Glucose Transporter 4 Translocation. Journal of Biological Chemistry, 1996, 271, 31372-31378.	3.4	1,115
2	Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance. Cell Metabolism, 2007, 5, 167-179.	16.2	1,048
3	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	30.7	751
4	Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice. Journal of Clinical Investigation, 2011, 121, 1858-1870.	8.2	566
5	A Ceramide-Centric View of Insulin Resistance. Cell Metabolism, 2012, 15, 585-594.	16.2	505
6	A Role for Ceramide, but Not Diacylglycerol, in the Antagonism of Insulin Signal Transduction by Saturated Fatty Acids. Journal of Biological Chemistry, 2003, 278, 10297-10303.	3.4	500
7	Sphingolipids, Insulin Resistance, and Metabolic Disease: New Insights from in Vivo Manipulation of Sphingolipid Metabolism. Endocrine Reviews, 2008, 29, 381-402.	20.1	480
8	Ceramides – Lipotoxic Inducers of Metabolic Disorders. Trends in Endocrinology and Metabolism, 2015, 26, 538-550.	7.1	463
9	Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Archives of Biochemistry and Biophysics, 2003, 419, 101-109.	3.0	427
10	Regulation of Insulin-Stimulated Glucose Transporter GLUT4 Translocation and Akt Kinase Activity by Ceramide. Molecular and Cellular Biology, 1998, 18, 5457-5464.	2.3	411
11	CerS2 Haploinsufficiency Inhibits β-Oxidation and Confers Susceptibility to Diet-Induced Steatohepatitis and Insulin Resistance. Cell Metabolism, 2014, 20, 687-695.	16.2	379
12	Ceramides as modulators of cellular and whole-body metabolism. Journal of Clinical Investigation, 2011, 121, 4222-4230.	8.2	350
13	Regulation of Insulin Action by Ceramide. Journal of Biological Chemistry, 2004, 279, 36608-36615.	3.4	338
14	Inhibition of Akt Kinase by Cell-permeable Ceramide and Its Implications for Ceramide-induced Apoptosis. Journal of Biological Chemistry, 1998, 273, 16568-16575.	3.4	315
15	Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nature Reviews Endocrinology, 2017, 13, 79-91.	9.6	313
16	Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science, 2019, 365, 386-392.	12.6	304
17	Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 2014, 59, 1366-1380.	7.3	285
18	Construction and Characterization of a Conditionally Active Version of the Serine/Threonine Kinase Akt. Journal of Biological Chemistry, 1998, 273, 11937-11943.	3.4	281

#	Article	IF	CITATIONS
19	Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. Journal of Clinical Investigation, 2012, 122, 2428-2438.	8.2	211
20	Ceramide Mediates Vascular Dysfunction in Diet-Induced Obesity by PP2A-Mediated Dephosphorylation of the eNOS-Akt Complex. Diabetes, 2012, 61, 1848-1859.	0.6	193
21	Acid Ceramidase Overexpression Prevents the Inhibitory Effects of Saturated Fatty Acids on Insulin Signaling. Journal of Biological Chemistry, 2005, 280, 20148-20153.	3.4	188
22	The Role of Glycogen Synthase Kinase 3β in Insulin-stimulated Glucose Metabolism. Journal of Biological Chemistry, 1999, 274, 17934-17940.	3.4	187
23	Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14468-14473.	7.1	186
24	Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism. Cell Metabolism, 2016, 24, 820-834.	16.2	186
25	Steroidogenic Acute Regulatory Protein (StAR) Is A Sterol Transfer Protein. Journal of Biological Chemistry, 1998, 273, 26285-26288.	3.4	185
26	Protein Kinase A-Dependent and -Independent Signaling Pathways Contribute to Cyclic AMP-Stimulated Proliferation. Molecular and Cellular Biology, 1999, 19, 5882-5891.	2.3	174
27	A Role for Sphingolipids in Producing the Common Features of Type 2 Diabetes, Metabolic Syndrome X, and Cushing's Syndrome. Diabetes, 2005, 54, 591-602.	0.6	168
28	Ceramides and other sphingolipids as drivers of cardiovascular disease. Nature Reviews Cardiology, 2021, 18, 701-711.	13.7	160
29	Metabolic Messengers: ceramides. Nature Metabolism, 2019, 1, 1051-1058.	11.9	158
30	Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. Journal of Clinical Investigation, 2020, 130, 1363-1376.	8.2	141
31	Lipid oversupply, selective insulin resistance, and lipotoxicity: Molecular mechanisms. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 252-265.	2.4	138
32	Ceramide dissociates 3â€2-phosphoinositide production from pleckstrin homology domain translocation. Biochemical Journal, 2001, 354, 359-368.	3.7	132
33	Could Ceramides Become the New Cholesterol?. Cell Metabolism, 2018, 27, 276-280.	16.2	126
34	Sphingolipids and insulin resistance: the five Ws. Current Opinion in Lipidology, 2010, 21, 128-135.	2.7	125
35	Dihydroceramides: From Bit Players to Lead Actors. Journal of Biological Chemistry, 2015, 290, 15371-15379.	3.4	121
36	Ceramides in Metabolism: Key Lipotoxic Players. Annual Review of Physiology, 2021, 83, 303-330.	13.1	120

3

#	Article	IF	CITATIONS
37	Fenretinide Prevents Lipid-induced Insulin Resistance by Blocking Ceramide Biosynthesis. Journal of Biological Chemistry, 2012, 287, 17426-17437.	3.4	110
38	Ceramides and Glucosylceramides Are Independent Antagonists of Insulin Signaling. Journal of Biological Chemistry, 2014, 289, 723-734.	3.4	107
39	Ablation of AMP-Activated Protein Kinase α2 Activity Exacerbates Insulin Resistance Induced by High-Fat Feeding of Mice. Diabetes, 2008, 57, 2958-2966.	0.6	102
40	Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood, 2007, 109, 560-565.	1.4	96
41	Identification of Wortmannin-sensitive Targets in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1999, 274, 24677-24684.	3.4	92
42	Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo. Diabetes, 2015, 64, 3914-3926.	0.6	92
43	Signaling Pathways Mediating Insulin-Stimulated Glucose Transport. Annals of the New York Academy of Sciences, 1999, 892, 169-186.	3.8	91
44	Ceramide dissociates 3â€2-phosphoinositide production from pleckstrin homology domain translocation. Biochemical Journal, 2001, 354, 359.	3.7	81
45	Ablation of Dihydroceramide Desaturase 1, a Therapeutic Target for the Treatment of Metabolic Diseases, Simultaneously Stimulates Anabolic and Catabolic Signaling. Molecular and Cellular Biology, 2013, 33, 2353-2369.	2.3	78
46	Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 633-639.	1.5	71
47	Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk. Cell Reports, 2018, 25, 1708-1717.e5.	6.4	70
48	Profiling of Plasma Metabolites Suggests Altered Mitochondrial Fuel Usage and Remodeling of Sphingolipid Metabolism in Individuals With TypeÂ2 Diabetes and Kidney Disease. Kidney International Reports, 2017, 2, 470-480.	0.8	68
49	Plasma Ceramides as Prognostic Biomarkers and Their Arterial and Myocardial Tissue Correlates in AcuteÂMyocardial Infarction. JACC Basic To Translational Science, 2018, 3, 163-175.	4.1	64
50	A Role for Ceramides, but Not Sphingomyelins, as Antagonists of Insulin Signaling and Mitochondrial Metabolism in C2C12 Myotubes. Journal of Biological Chemistry, 2016, 291, 23978-23988.	3.4	58
51	Differentiation-dependent Suppression of Platelet-derived Growth Factor Signaling in Cultured Adipocytes. Journal of Biological Chemistry, 1999, 274, 23858-23867.	3.4	57
52	Increased Dihydroceramide/Ceramide Ratio Mediated by Defective Expression of <i>degs1</i> Impairs Adipocyte Differentiation and Function. Diabetes, 2015, 64, 1180-1192.	0.6	55
53	Polyoma Middle T Antigen Activates the Ser/Thr Kinase Akt in a PI3-Kinase-Dependent Manner. Biochemical and Biophysical Research Communications, 1998, 246, 76-81.	2.1	52
54	Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. ELife, 2020, 9, .	6.0	45

#	Article	IF	CITATIONS
55	Adipocyte Ceramides—The Nexus of Inflammation and Metabolic Disease. Frontiers in Immunology, 2020, 11, 576347.	4.8	43
56	CrossTalk proposal: Intramyocellular ceramide accumulation does modulate insulin resistance. Journal of Physiology, 2016, 594, 3167-3170.	2.9	39
57	Reign in the membrane: How common lipids govern mitochondrial function. Current Opinion in Cell Biology, 2020, 63, 162-173.	5.4	39
58	The ceramide ratio: a predictor of cardiometabolic risk. Journal of Lipid Research, 2018, 59, 1549-1550.	4.2	36
59	Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue. Lipids in Health and Disease, 2012, 11, 115.	3.0	33
60	Cholesterol – the devil you know; ceramide – the devil you don't. Trends in Pharmacological Sciences, 2021, 42, 1082-1095.	8.7	31
61	Phospholipid methylation regulates muscle metabolic rate through Ca2+ transport efficiency. Nature Metabolism, 2019, 1, 876-885.	11.9	30
62	Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growthâ€restricted rats. FASEB Journal, 2015, 29, 807-819.	0.5	29
63	Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Frontiers in Endocrinology, 2020, 11, 505.	3.5	27
64	Ceramides are necessary and sufficient for diet-induced impairment of thermogenic adipocytes. Molecular Metabolism, 2021, 45, 101145.	6.5	26
65	Substitution of conserved tyrosine residues in helix 4 (Y143) and 7 (Y293) affects the activity, but not IAPS-forskolin binding, of the glucose transporter GLUT4. FEBS Letters, 1994, 348, 114-118.	2.8	24
66	Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. International Journal of Molecular Sciences, 2020, 21, 1514.	4.1	24
67	Antioxidant Effects of N-Acetylcysteine Prevent Programmed Metabolic Disease in Mice. Diabetes, 2020, 69, 1650-1661.	0.6	23
68	Conditional deletion of <i>Des1</i> in the mouse retina does not impair the visual cycle in cones. FASEB Journal, 2019, 33, 5782-5792.	0.5	22
69	Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells. Human Reproduction, 2014, 29, 2287-2301.	0.9	19
70	Ceramides: Nutrient Signals that Drive Hepatosteatosis. Journal of Lipid and Atherosclerosis, 2020, 9, 50.	3.5	19
71	The ART of Lowering Ceramides. Cell Metabolism, 2015, 22, 195-196.	16.2	16
72	Risky lipids: refining the ceramide score that measures cardiovascular health. European Heart Journal, 2019, 41, 381-382.	2.2	16

#	Article	IF	CITATIONS
73	Ceramide Biomarkers Predictive of Cardiovascular Disease Risk Increase in Healthy Older Adults After Bed Rest. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1663-1670.	3.6	16
74	Strong Heart, Low Ceramides. Diabetes, 2018, 67, 1457-1460.	0.6	15
75	Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Frontiers in Endocrinology, 2020, 11, 622692.	3.5	15
76	Pharmacological inhibition of TLR4 ameliorates muscle and liver ceramide content after disuse in previously physically active mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R503-R511.	1.8	13
77	DES1: A Key Driver of Lipotoxicity in Metabolic Disease. DNA and Cell Biology, 2020, 39, 733-737.	1.9	11
78	Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Scientific Reports, 2022, 12, 7273.	3.3	10
79	Characterizing a Common CERS2 Polymorphism in a Mouse Model of Metabolic Disease and in Subjects from the Utah CAD Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3098-e3109.	3.6	8
80	Physiological mechanisms of sustained fumagillin-induced weight loss. JCI Insight, 2018, 3, .	5.0	8
81	Does This Schlank Make Me Look Fat?. Trends in Endocrinology and Metabolism, 2018, 29, 597-599.	7.1	7
82	FOXN3 controls liver glucose metabolism by regulating gluconeogenic substrate selection. Physiological Reports, 2019, 7, e14238.	1.7	6
83	Ceramide signaling in the gut. Molecular and Cellular Endocrinology, 2022, 544, 111554.	3.2	6
84	The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease. Annual Review of Nutrition, 2022, 42, 115-144.	10.1	6
85	Following Roux-en-Y gastric bypass surgery, serum ceramides demarcate patients that will fail to achieve normoglycemia and diabetes remission. Med, 2022, 3, 452-467.e4.	4.4	6
86	You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159125.	2.4	4
87	Editorial: The Role of Ceramides in Diabetes and Cardiovascular Disease. Frontiers in Endocrinology, 2021, 12, 667885.	3.5	3
88	Very-Long-Chain Unsaturated Sphingolipids Mediate Oleate-Induced Rat β-Cell Proliferation. Diabetes, 2022, 71, 1218-1232.	0.6	3
89	Short-term exposure to a clinical dose of metformin increases skeletal muscle mitochondrial H2O2 emission and production in healthy, older adults: A randomized controlled trial. Experimental Gerontology, 2022, 163, 111804.	2.8	3
90	Gain of â€~FAOnction', Loss of Fibrosis. Trends in Endocrinology and Metabolism, 2021, 32, 333-334.	7.1	2

#	Article	IF	CITATIONS
91	Listen to your heart when ceramide's calling for higher glucose. EBioMedicine, 2019, 41, 3-4.	6.1	1
92	50th International Conference on the Bioscience of Lipids. Clinical Lipidology, 2009, 4, 713-719.	0.4	0
93	Rebuttal from Scott A. Summers and Bret H. Goodpaster. Journal of Physiology, 2016, 594, 3175-3176.	2.9	Ο
94	Gutting out Myc to decrease ceramides. Nature Metabolism, 2021, 3, 890-891.	11.9	0
95	Deletion of miRâ€92a Results in Glucose Intolerance via Impaired Pancreatic Beta Cell Function. FASEB Journal, 2019, 33, 714.2.	0.5	0