## Marcey L Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749794/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Systematic Variation of Both the Aromatic Cage and Dialkyllysine via GCE-SAR Reveal Mechanistic<br>Insights in CBX5 Reader Protein Binding. Journal of Medicinal Chemistry, 2022, 65, 2646-2655.                                            | 6.4  | 13        |
| 2  | Comparative Analysis of Sulfoniumâ^'í€, Ammoniumâ^'í€, and Sulfurâ^'í€ Interactions and Relevance to<br>SAM-Dependent Methyltransferases. Journal of the American Chemical Society, 2022, 144, 2535-2545.                                   | 13.7 | 2         |
| 3  | Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water. Chemistry - A<br>European Journal, 2021, 27, 6620-6644.                                                                                                   | 3.3  | 18        |
| 4  | Frontispiece: Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water.<br>Chemistry - A European Journal, 2021, 27, .                                                                                              | 3.3  | 0         |
| 5  | Development of "Imprint-and-Report―Dynamic Combinatorial Libraries for Differential Sensing<br>Applications. Journal of the American Chemical Society, 2021, 143, 14845-14854.                                                              | 13.7 | 21        |
| 6  | Contributions of methionine to recognition of trimethyllysine in aromatic cage of PHD domains:<br>implications of polarizability, hydrophobicity, and charge on binding. Chemical Science, 2021, 12,<br>8900-8908.                          | 7.4  | 5         |
| 7  | Engineered Reader Proteins for Enhanced Detection of Methylated Lysine on Histones. ACS Chemical Biology, 2020, 15, 103-111.                                                                                                                | 3.4  | 15        |
| 8  | More Than ï€â€"ï€â€"ï€ Stacking: Contribution of Amideâ^ï€ and CHâ^ï€ Interactions to Crotonyllysine Binding by the AF9 YEATS Domain. Journal of the American Chemical Society, 2020, 142, 17048-17056.                                     | 13.7 | 26        |
| 9  | Thermodynamic consequences of Tyr to Trp mutations in the cation–ï€-mediated binding of<br>trimethyllysine by the HP1 chromodomain. Chemical Science, 2020, 11, 3495-3500.                                                                  | 7.4  | 12        |
| 10 | Using changes in speciation in a dynamic combinatorial library as a fingerprint to differentiate the methylation states of arginine. Chemical Communications, 2020, 56, 3947-3950.                                                          | 4.1  | 5         |
| 11 | Achieving High Affinity and Selectivity for Asymmetric Dimethylarginine by Putting a Lid on a Box.<br>Angewandte Chemie, 2019, 131, 5336-5339.                                                                                              | 2.0  | 9         |
| 12 | Achieving High Affinity and Selectivity for Asymmetric Dimethylarginine by Putting a Lid on a Box.<br>Angewandte Chemie - International Edition, 2019, 58, 5282-5285.                                                                       | 13.8 | 18        |
| 13 | A study of 2-component i, i + 3 peptide stapling using thioethers. Bioorganic and Medicinal Chemistry, 2018, 26, 1203-1205.                                                                                                                 | 3.0  | 4         |
| 14 | N-Gemini peptides: cytosolic protease resistance via N-terminal dimerization of unstructured peptides.<br>Chemical Communications, 2018, 54, 204-207.                                                                                       | 4.1  | 0         |
| 15 | Development of β-Hairpin Peptides for the Measurement of SCF-Family E3 Ligase Activity in Vitro via<br>Ornithine Ubiquitination. ACS Omega, 2017, 2, 1198-1206.                                                                             | 3.5  | 4         |
| 16 | Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold:<br>insights into selective recognition of hydrophilic guests in water. Organic and Biomolecular<br>Chemistry, 2017, 15, 7789-7795. | 2.8  | 15        |
| 17 | Investigation of Trimethyllysine Binding by the HP1 Chromodomain via Unnatural Amino Acid<br>Mutagenesis. Journal of the American Chemical Society, 2017, 139, 17253-17256.                                                                 | 13.7 | 27        |
| 18 | Fluorogenic sensor platform for the histone code using receptors from dynamic combinatorial libraries. Chemical Science, 2017, 8, 1422-1428.                                                                                                | 7.4  | 29        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | From supramolecular chemistry to the nucleosome: studies in biomolecular recognition. Beilstein<br>Journal of Organic Chemistry, 2016, 12, 1863-1869.                                                          | 2.2  | 0         |
| 20 | Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to<br>Histone Deacetylase Assays. Journal of the American Chemical Society, 2016, 138, 9452-9459.          | 13.7 | 37        |
| 21 | Bonds that bind. Nature Chemical Biology, 2016, 12, 768-769.                                                                                                                                                   | 8.0  | 2         |
| 22 | Tetrameric psuedo-peptide receptors with allosteric properties. Chemical Communications, 2016, 52, 8103-8106.                                                                                                  | 4.1  | 3         |
| 23 | Molecular Recognition of Lys and Arg Methylation. ACS Chemical Biology, 2016, 11, 643-653.                                                                                                                     | 3.4  | 64        |
| 24 | Identification of a p53-based portable degron based on the MDM2-p53 binding region. Analyst, The, 2016, 141, 570-578.                                                                                          | 3.5  | 5         |
| 25 | Secondary Binding Interactions in a Synthetic Receptor for Trimethyllysine. Chemistry - A European<br>Journal, 2015, 21, 17981-17986.                                                                          | 3.3  | 9         |
| 26 | Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water. Organic and Biomolecular Chemistry, 2015, 13, 3220-3226.                 | 2.8  | 24        |
| 27 | Effects of Helix Macrodipole and Local Interactions on Catalysis of Acyl Transfer by α-Helical Peptides.<br>ACS Catalysis, 2015, 5, 1617-1622.                                                                 | 11.2 | 10        |
| 28 | Investigation of the β-Sheet Interactions between dHP1 Chromodomain and Histone 3. Biochemistry, 2015, 54, 2314-2322.                                                                                          | 2.5  | 7         |
| 29 | Late stage modification of receptors identified from dynamic combinatorial libraries. Organic and Biomolecular Chemistry, 2015, 13, 10939-10945.                                                               | 2.8  | 10        |
| 30 | A Catalyst Selection Protocol That Identifies Biomimetic Motifs from β-Hairpin Libraries. Journal of the<br>American Chemical Society, 2014, 136, 15817-15820.                                                 | 13.7 | 25        |
| 31 | Development and mechanistic studies of an optimized receptor for trimethyllysine using iterative redesign by dynamic combinatorial chemistry. Organic and Biomolecular Chemistry, 2014, 12, 7059-7067.         | 2.8  | 41        |
| 32 | Identification and optimization of short helical peptides with novel reactive functionality as<br>catalysts for acyl transfer by reactive tagging. Organic and Biomolecular Chemistry, 2014, 12,<br>1488-1494. | 2.8  | 21        |
| 33 | β-Turn sequences promote stability of peptide substrates for kinases within the cytosolic environment.<br>Analyst, The, 2013, 138, 4305.                                                                       | 3.5  | 12        |
| 34 | Positional effects of click cyclization on $\hat{l}^2$ -hairpin structure, stability, and function. Organic and Biomolecular Chemistry, 2013, 11, 69-77.                                                       | 2.8  | 34        |
| 35 | Electron transfer dynamics of peptideâ€derivatized Ru <sup>II</sup> â€polypyridyl complexes on nanocrystalline metal oxide films. Biopolymers, 2013, 100, 25-37.                                               | 2.4  | 7         |
| 36 | Interfacial Energy Conversion in Ru <sup>II</sup> Polypyridyl-Derivatized Oligoproline Assemblies on<br>TiO <sub>2</sub> . Journal of the American Chemical Society, 2013, 135, 5250-5253.                     | 13.7 | 44        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Synthetic Receptor for Asymmetric Dimethyl Arginine. Journal of the American Chemical Society, 2013, 135, 6450-6455.                                                                                    | 13.7 | 86        |
| 38 | A Comparative Analysis of the Ubiquitination Kinetics of Multiple Degrons to Identify an Ideal<br>Targeting Sequence for a Proteasome Reporter. PLoS ONE, 2013, 8, e78082.                                | 2.5  | 12        |
| 39 | Self-Assembled Multi-Component Catenanes: The Effect of Multivalency and Cooperativity on Structure and Stability. Journal of the American Chemical Society, 2012, 134, 11430-11443.                      | 13.7 | 46        |
| 40 | Constitutionally selective amplification of multicomponent 84-membered macrocyclic hosts for<br>(â^')-cytidine•H+. Chemical Science, 2011, 2, 744.                                                        | 7.4  | 48        |
| 41 | Redesign of a WW Domain Peptide for Selective Recognition of Single-Stranded DNA. Biochemistry, 2011, 50, 2575-2584.                                                                                      | 2.5  | 13        |
| 42 | Inducedâ€Fit Binding of a Polyproline Helix by a βâ€Hairpin Peptide. Angewandte Chemie - International<br>Edition, 2011, 50, 12201-12204.                                                                 | 13.8 | 10        |
| 43 | Tuning HP1α Chromodomain Selectivity for Di- and Trimethyllysine. ChemBioChem, 2011, 12, 2786-2790.                                                                                                       | 2.6  | 13        |
| 44 | Interactions Between HP1 Chromodomain and H3 Trimethyllysine9 Histone Tail. FASEB Journal, 2011, 25, 896.4.                                                                                               | 0.5  | 0         |
| 45 | Dueling Post-Translational Modifications Trigger Folding and Unfolding of a Î <sup>2</sup> -Hairpin Peptide. Journal of the American Chemical Society, 2010, 132, 9007-9013.                              | 13.7 | 17        |
| 46 | Positional effects of phosphoserine on β-hairpin stability. Organic and Biomolecular Chemistry, 2010, 8,<br>5411.                                                                                         | 2.8  | 10        |
| 47 | A small molecule receptor that selectively recognizes trimethyl lysine in a histonepeptide with native protein-like affinity. Chemical Communications, 2010, 46, 1839-1841.                               | 4.1  | 83        |
| 48 | Structural Effects on ss―and dsDNA Recognition by a βâ€Hairpin Peptide. ChemBioChem, 2009, 10, 539-544.                                                                                                   | 2.6  | 15        |
| 49 | The structure of wellâ€folded βâ€hairpin peptides promotes resistance to peptidase degradation.<br>Biopolymers, 2009, 92, 502-507.                                                                        | 2.4  | 31        |
| 50 | The geometry and efficacy of cation-π interactions in a diagonal position of a designed β-hairpin.<br>Protein Science, 2009, 12, 2443-2452.                                                               | 7.6  | 109       |
| 51 | Controlling Peptide Folding with Repulsive Interactions between Phosphorylated Amino Acids and Tryptophan. Journal of the American Chemical Society, 2009, 131, 14081-14087.                              | 13.7 | 21        |
| 52 | Design of Highly Stabilized β-Hairpin Peptides through Cationâ~'ï€ Interactions of Lysine and<br><i>N</i> -Methyllysine with an Aromatic Pocket. Biochemistry, 2009, 48, 1525-1531.                       | 2.5  | 54        |
| 53 | Design of a Î <sup>2</sup> -hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Organic and Biomolecular Chemistry, 2009, 7, 4622. | 2.8  | 13        |
| 54 | Stabilization of the Nâ€ŧerminal βâ€hairpin of ubiquitin by a terminal hydrophobic cluster. Biopolymers,<br>2008, 90, 394-398.                                                                            | 2.4  | 8         |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Carbohydrateâ^"ĩ€ Interactions: What Are They Worth?. Journal of the American Chemical Society, 2008, 130, 14625-14633.                                                                               | 13.7 | 179       |
| 56 | Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11184-11188. | 7.1  | 153       |
| 57 | Evaluation of a carbohydrate–i̇́€ interaction in a peptide model system. Chemical Communications, 2007, , 4026.                                                                                       | 4.1  | 77        |
| 58 | Effects of Chain Length and N-Methylation on a Cation–π Interaction in a β-Hairpin Peptide. Chemistry -<br>A European Journal, 2007, 13, 5753-5764.                                                   | 3.3  | 59        |
| 59 | The model student: what chemical model systems can teach us about biology. , 2007, 3, 70-73.                                                                                                          |      | 27        |
| 60 | Effects of Lysine Acetylation in a β-Hairpin Peptide: Comparison of an Amideâ~'Ï€ and a Cationâ^'Ï€<br>Interaction. Journal of the American Chemical Society, 2006, 128, 13586-13591.                 | 13.7 | 60        |
| 61 | Arginine Methylation in a β-Hairpin Peptide: Implications for Argâ^'Ĩ€ Interactions, ΔCp°, and the Cold<br>Denatured State. Journal of the American Chemical Society, 2006, 128, 12735-12742.         | 13.7 | 79        |
| 62 | Model systems for Î <sup>2</sup> -hairpins and Î <sup>2</sup> -sheets. Current Opinion in Structural Biology, 2006, 16, 514-524.                                                                      | 5.7  | 176       |
| 63 | Molecular recognition with designed peptides and proteins. Current Opinion in Chemical Biology, 2005, 9, 627-631.                                                                                     | 6.1  | 26        |
| 64 | Turn Residues in β-Hairpin Peptides as Points for Covalent Modification. Organic Letters, 2005, 7, 3825-3828.                                                                                         | 4.6  | 16        |
| 65 | Minimalist Protein Design: A β-Hairpin Peptide That Binds ssDNA. Journal of the American Chemical<br>Society, 2005, 127, 24-25.                                                                       | 13.7 | 51        |
| 66 | Influence ofN-Methylation on a Cationâ^'Ï€ Interaction Produces a Remarkably Stable β-Hairpin Peptide.<br>Journal of the American Chemical Society, 2005, 127, 6518-6519.                             | 13.7 | 80        |
| 67 | The Recognition of Nucleotides with Μodel β-Hairpin Receptors: Investigation of Critical Contacts and<br>Nucleotide Selectivity. Journal of Organic Chemistry, 2005, 70, 1105-1114.                   | 3.2  | 51        |
| 68 | Investigation of the nature of the methionine-π interaction in β-hairpin peptide model systems. Protein<br>Science, 2004, 13, 2515-2522.                                                              | 7.6  | 75        |
| 69 | A Peptide Flavoprotein Mimic: Flavin Recognition and Redox Potential Modulation in Water by a Designedβ Hairpin. Angewandte Chemie - International Edition, 2004, 43, 724-727.                        | 13.8 | 39        |
| 70 | Aromatic interactions in peptides: Impact on structure and function. Biopolymers, 2004, 76, 435-445.                                                                                                  | 2.4  | 170       |
| 71 | Comparison of Câ~'H··Â-Ï€ and Hydrophobic Interactions in a β-Hairpin Peptide:  Impact on Stability and Specificity. Journal of the American Chemical Society, 2004, 126, 2028-2034.                  | 13.7 | 139       |
| 72 | Effect of Halogenation on Edgeâ ''Face Aromatic Interactions in a β-Hairpin Peptide:  Enhanced Affinity<br>with Iodo-Substituents. Organic Letters, 2004, 6, 3969-3972.                               | 4.6  | 39        |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sequence dependence of β-hairpin structure: Comparison of a salt bridge and an aromatic interaction.<br>Protein Science, 2003, 12, 2657-2667.                                   | 7.6  | 84        |
| 74 | A Designed β-Hairpin Peptide for Molecular Recognition of ATP in Water. Journal of the American Chemical Society, 2003, 125, 9580-9581.                                         | 13.7 | 140       |
| 75 | Selective Aromatic Interactions in β-Hairpin Peptides. Journal of the American Chemical Society, 2002, 124, 9372-9373.                                                          | 13.7 | 205       |
| 76 | Aromatic interactions in model systems. Current Opinion in Chemical Biology, 2002, 6, 736-741.                                                                                  | 6.1  | 416       |
| 77 | Simple Cationâ~ï€ Interaction between a Phenyl Ring and a Protonated Amine Stabilizes an α-Helix in<br>Water. Journal of the American Chemical Society, 2002, 124, 14917-14921. | 13.7 | 94        |
| 78 | Contribution of Aromatic Interactions to α-Helix Stability. Journal of the American Chemical Society, 2002, 124, 9751-9755.                                                     | 13.7 | 153       |
| 79 | Unexpected Substituent Effects in Offset Ï€â^'Ï€ Stacked Interactions in Water. Journal of the American<br>Chemical Society, 2002, 124, 1860-1861.                              | 13.7 | 219       |
|    |                                                                                                                                                                                 |      |           |

Terminal chalcogenido complexes of zirconium: Syntheses and reactivity of Cp2\*Zr(E)(NC5H5) (E = O, S,) Tj ETQq0.00 rgBT  $\frac{1}{1.8}$  or gBT  $\frac{1}{$ 

| 81 | Terminal zirconium oxo complexes: synthesis, structure, and reactivity of<br>(.eta.5-C5Me4R)2Zr(O)(NC5H4R'). Journal of the American Chemical Society, 1993, 115, 4917-4918.             | 13.7 | 90 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 82 | Application of an Imprintâ€andâ€Report Sensor Array for Detection of the Dietary Metabolite<br>Trimethylamine Nâ€Oxide and Its Precursors in Complex Mixtures. Angewandte Chemie, 0, , . | 2.0  | 1  |