William A Mitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749568/publications.pdf

Version: 2024-02-01

22548 25230 13,457 139 61 113 citations h-index g-index papers 143 143 143 8203 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs). Environmental Science & Echnology, 2014, 48, 2344-2351.	4.6	785
2	Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters. Environmental Science & Envir	4.6	717
3	Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. Environmental Science & Environmental Science & 2012, 46, 119-131.	4.6	592
4	Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. Environmental Science & Enviro	4.6	584
5	N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science, 2003, 20, 389-404.	0.8	571
6	Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination. Environmental Science & Environmental Scien	4.6	517
7	Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 2013, 47, 4433-4450.	5.3	445
8	Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nature Sustainability, 2021, 4, 233-241.	11.5	350
9	Characterization and Fate ofN-Nitrosodimethylamine Precursors in Municipal Wastewater Treatment Plants. Environmental Science & Environmental Science	4.6	327
10	Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse. Environmental Science & Emp; Technology, 2017, 51, 13859-13868.	4.6	313
11	Nitrosamine Formation Pathway Revisited:Â The Importance of Chloramine Speciation and Dissolved Oxygen. Environmental Science & Environmental Science	4.6	272
12	A N-Nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Research, 2003, 37, 3733-3741.	5. 3	257
13	Effect of matrix components on UV/H2O2 and UV/S2O82â^ advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 2016, 89, 192-200.	5 . 3	232
14	Influence of the Order of Reagent Addition on NDMA Formation during Chloramination. Environmental Science & Environmental Scie	4.6	225
15	Iodide, Bromide, and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications. Environmental Science & Environmental &	4.6	215
16	Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. Environmental Science & Environmental Scien	4.6	213
17	Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Sciences: Processes and Impacts, 2018, 20, 1089-1122.	1.7	180
18	Halogen radicals contribute to photooxidation in coastal and estuarine waters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5868-5873.	3.3	174

#	Article	IF	CITATIONS
19	N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse. Water Research, 2016, 101, 176-186.	5.3	173
20	Enhanced Formation of Disinfection Byproducts in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environmental Science & Environmental Science	4.6	157
21	Role of Black Carbon Electrical Conductivity in Mediating Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Transformation on Carbon Surfaces by Sulfides. Environmental Science &	4.6	155
22	Trade-Offs in Disinfection Byproduct Formation Associated with Precursor Preoxidation for Control of <i>N</i> -Nitrosodimethylamine Formation. Environmental Science & Environm	4.6	152
23	Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Research, 2011, 45, 6535-6544.	5. 3	150
24	Dichloroacetonitrile and Dichloroacetamide Can Form Independently during Chlorination and Chloramination of Drinking Waters, Model Organic Matters, and Wastewater Effluents. Environmental Science & Environmental Science amp; Technology, 2012, 46, 10624-10631.	4.6	150
25	Nitrile, Aldehyde, and Halonitroalkane Formation during Chlorination/Chloramination of Primary Amines. Environmental Science &	4.6	144
26	Quaternary Amines As Nitrosamine Precursors: A Role for Consumer Products?. Environmental Science & En	4.6	139
27	Sources and Fate of Nitrosodimethylamine and its Precursors in Municipal Wastewater Treatment Plants. Water Environment Research, 2005, 77, 32-39.	1.3	132
28	Impact of UV Disinfection Combined with Chlorination/Chloramination on the Formation of Halonitromethanes and Haloacetonitriles in Drinking Water. Environmental Science & Emp; Technology, 2011, 45, 3657-3664.	4.6	132
29	Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of <i>N</i> -nitrosamines and Halogenated Disinfection Byproducts. Environmental Science & Environme	4.6	124
30	Impact of UV/H ₂ O ₂ Pre-Oxidation on the Formation of Haloacetamides and Other Nitrogenous Disinfection Byproducts during Chlorination. Environmental Science & Eamp; Technology, 2014, 48, 12190-12198.	4.6	123
31	Occurrence and Fate of Nitrosamines and Nitrosamine Precursors in Wastewater-Impacted Surface Waters Using Boron As a Conservative Tracer. Environmental Science & Environment	4.6	119
32	Nitrosamine Carcinogens Also Swim in Chlorinated Pools. Environmental Science & Emp; Technology, 2008, 42, 1032-1037.	4.6	116
33	A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. Accounts of Chemical Research, 2019, 52, 615-622.	7.6	112
34	Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods. Environmental Science & Environ	4.6	111
35	Comparison of Byproduct Formation in Waters Treated with Chlorine and Iodine: Relevance to Point-of-Use Treatment. Environmental Science & Eamp; Technology, 2010, 44, 8446-8452.	4.6	111
36	Influence of Ionic Strength on Triplet-State Natural Organic Matter Loss by Energy Transfer and Electron Transfer Pathways. Environmental Science & Electron Transfer Pathways. Environmental Science & Electron Transfer Pathways.	4. 6	109

3

#	Article	IF	Citations
37	Measurement of Nitrosamine and Nitramine Formation from NO _{<i>x</i>} Reactions with Amines during Amine-Based Carbon Dioxide Capture for Postcombustion Carbon Sequestration. Environmental Science & Environmental S	4.6	108
38	Degradation of Tertiary Alkylamines during Chlorination/Chloramination: Implications for Formation of Aldehydes, Nitriles, Halonitroalkanes, and Nitrosamines. Environmental Science & Environmental &	4.6	102
39	Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. Environmental Science & Environmental Science	4.6	102
40	Development of Predictive Models for the Degradation of Halogenated Disinfection Byproducts during the UV/H ₂ O ₂ Advanced Oxidation Process. Environmental Science & Environmental	4.6	95
41	Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 2019, 164, 114939.	5.3	87
42	Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse. Water Research, 2019, 152, 215-225.	5.3	87
43	Impact of Halide Ions on Natural Organic Matter-Sensitized Photolysis of 17β-Estradiol in Saline Waters. Environmental Science & Environmental Scienc	4.6	83
44	Contribution of <i>N</i> -Nitrosamines and Their Precursors to Domestic Sewage by Greywaters and Blackwaters. Environmental Science & Environmental Sci	4.6	83
45	Enhanced Nitrogenous Disinfection ByProduct Formation near the Breakpoint:  Implications for Nitrification Control. Environmental Science & Environ	4.6	82
46	Impact of halides on the photobleaching of dissolved organic matter. Marine Chemistry, 2009, 115, 134-144.	0.9	82
47	Black Carbon-Mediated Destruction of Nitroglycerin and RDX By Hydrogen Sulfide. Environmental Science & Environmental Science	4.6	82
48	Sunlight-Driven Photochemical Halogenation of Dissolved Organic Matter in Seawater: A Natural Abiotic Source of Organobromine and Organoiodine. Environmental Science & Enviro	4.6	80
49	Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater. Water Research, 2017, 122, 633-644.	5.3	80
50	Comparison of Toxicity-Weighted Disinfection Byproduct Concentrations in Potable Reuse Waters and Conventional Drinking Waters as a New Approach to Assessing the Quality of Advanced Treatment Train Waters. Environmental Science & Environmental Sc	4.6	80
51	Formation Pathways and Trade-Offs between Haloacetamides and Haloacetaldehydes during Combined Chlorination and Chloramination of Lignin Phenols and Natural Waters. Environmental Science & Emp; Technology, 2015, 49, 14432-14440.	4.6	77
52	Comparative Mammalian Cell Cytotoxicity of Water Concentrates from Disinfected Recreational Pools. Environmental Science & Env	4.6	74
53	Impact of Nitrification on the Formation of <i>N</i> -Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities. Environmental Science & Environmental Science	4.6	74
54	Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Science of the Total Environment, 2019, 688, 1216-1227.	3.9	73

#	Article	IF	CITATIONS
55	Abiotic Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in the Presence of Hydrogen Sulfide and Black Carbon. Environmental Science & Environme	4.6	69
56	Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environmental Science & Environmental Sc	4.6	66
57	Formation and control of emerging C―and Nâ€DBPs in drinking water. Journal - American Water Works Association, 2012, 104, E582.	0.2	66
58	Relative Importance of $\langle i \rangle N \langle i \rangle$ -Nitrosodimethylamine Compared to Total $\langle i \rangle N \langle i \rangle$ -Nitrosamines in Drinking Waters. Environmental Science & Environmental Scienc	4.6	66
59	Reduction of Nitroaromatics Sorbed to Black Carbon by Direct Reaction with Sorbed Sulfides. Environmental Science & Environmen	4.6	66
60	Predicting the Contribution of Chloramines to Contaminant Decay during Ultraviolet/Hydrogen Peroxide Advanced Oxidation Process Treatment for Potable Reuse. Environmental Science & Emp; Technology, 2019, 53, 4416-4425.	4.6	66
61	Relative Importance of Different Water Categories as Sources of <i>N</i> -Nitrosamine Precursors. Environmental Science & Environmental Science & Envir	4.6	65
62	Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 741, 109-115.	0.9	62
63	Enhanced Phototransformation of Tetracycline at Smectite Clay Surfaces under Simulated Sunlight via a Lewis-Base Catalyzed Alkalization Mechanism. Environmental Science & Enpy; Technology, 2019, 53, 710-718.	4.6	60
64	Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater. Environmental Science & Environmental Sc	4.6	59
65	Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds. Environmental Science &	4.6	58
66	Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. Water Research, 2018, 143, 579-588.	5 . 3	58
67	Minimization of NDMA Formation during Chlorine Disinfection of Municipal Wastewater by Application of Pre-Formed Chloramines. Environmental Engineering Science, 2005, 22, 882-890.	0.8	54
68	Nitrosamine, Dimethylnitramine, and Chloropicrin Formation during Strong Base Anion-Exchange Treatment. Environmental Science & Exchange 1. Science & Exchange 2. Science 2. Sci	4.6	53
69	Superior Removal of Disinfection Byproduct Precursors and Pharmaceuticals from Wastewater in a Staged Anaerobic Fluidized Membrane Bioreactor Compared to Activated Sludge. Environmental Science and Technology Letters, 2014, 1, 459-464.	3.9	53
70	Application of Ultraviolet, Ozone, and Advanced Oxidation Treatments to Washwaters To Destroy Nitrosamines, Nitramines, Amines, and Aldehydes Formed during Amine-Based Carbon Capture. Environmental Science & Environmental	4.6	51
71	Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems. Environmental Science & Environmental Scie	4.6	51
72	Comparative <i>in Vitro</i> Toxicity of Nitrosamines and Nitramines Associated with Amine-based Carbon Capture and Storage. Environmental Science & En	4.6	50

#	Article	IF	CITATIONS
73	Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science, 2022, 376, 644-648.	6.0	48
74	Application of an Optimized Total <i>N</i> -Nitrosamine (TONO) Assay to Pools: Placing <i>N</i> -Nitrosodimethylamine (NDMA) Determinations into Perspective. Environmental Science & Technology, 2010, 44, 3369-3375.	4.6	47
75	Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Research, 2015, 84, 161-170.	5. 3	46
76	Influence of Amine Structural Characteristics on <i>N</i> -Nitrosamine Formation Potential Relevant to Postcombustion CO ₂ Capture Systems. Environmental Science & E	4.6	45
77	Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters. Water Research, 2020, 176, 115744.	5.3	45
78	Effects of Flue Gas Compositions on Nitrosamine and Nitramine Formation in Postcombustion CO2 Capture Systems. Environmental Science & Environmental S	4.6	41
79	Predicting <i>N</i> -Nitrosamines: <i>N</i> -Nitrosodiethanolamine as a Significant Component of Total <i>N</i> -Nitrosamines in Recycled Wastewater. Environmental Science and Technology Letters, 2015, 2, 54-58.	3.9	40
80	Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges. Water Research, 2010, 44, 4776-4782.	5 . 3	39
81	Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environmental Research, 2016, 149, 206-215.	3.7	39
82	Nitrosamines and Nitramines in Amine-Based Carbon Dioxide Capture Systems: Fundamentals, Engineering Implications, and Knowledge Gaps. Environmental Science & Enp.; Technology, 2017, 51, 11522-11536.	4.6	39
83	Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone. Environmental Science & Environmenta	4.6	37
84	Disinfection Byproducts in Rajasthan, India: Are Trihalomethanes a Sufficient Indicator of Disinfection Byproduct Exposure in Low-Income Countries? Environmental Science & Environmental Science, 2019, 53, 12007-12017.	4.6	36
85	Evaluation of Enhanced Ozone–Biologically Active Filtration Treatment for the Removal of 1,4-Dioxane and Disinfection Byproduct Precursors from Wastewater Effluent. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	4.6	36
86	Role of Lysine during Protein Modification by HOCl and HOBr: Halogen-Transfer Agent or Sacrificial Antioxidant?. Biochemistry, 2013, 52, 1260-1271.	1.2	35
87	Effect of Chemical Oxidation on the Sorption Tendency of Dissolved Organic Matter to a Model Hydrophobic Surface. Environmental Science & Environmenta	4.6	35
88	Structural Modifications to Quaternary Ammonium Polymer Coagulants to Inhibit <i>N</i> -Nitrosamine Formation. Environmental Science & Technology, 2016, 50, 4778-4787.	4.6	35
89	Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system. Water Research, 2016, 98, 354-362.	5.3	33
90	Influence of Dissolved Metals on <i>N</i> -Nitrosamine Formation under Amine-based CO ₂ Capture Conditions. Environmental Science & Environmen	4.6	32

#	Article	IF	CITATIONS
91	Influence of Bi-doping on Mn1â^'xBixFe2O4 catalytic ozonation of di-n-butyl phthalate. Chemical Engineering Journal, 2016, 283, 622-630.	6.6	31
92	<i>N</i> -Nitrosodimethylamine Formation during UV/Hydrogen Peroxide and UV/Chlorine Advanced Oxidation Process Treatment Following Reverse Osmosis for Potable Reuse. Environmental Science & Environm	4.6	31
93	Evaluation of a Pilot Anaerobic Secondary Effluent for Potable Reuse: Impact of Different Disinfection Schemes on Organic Fouling of RO Membranes and DBP Formation. Environmental Science & Echnology, 2019, 53, 3166-3176.	4.6	27
94	Reductive Electrochemical Activation of Hydrogen Peroxide as an Advanced Oxidation Process for Treatment of Reverse Osmosis Permeate during Potable Reuse. Environmental Science & Emp; Technology, 2020, 54, 12593-12601.	4.6	27
95	Distributed Chlorine Injection To Minimize NDMA Formation during Chloramination of Wastewater. Environmental Science and Technology Letters, 2018, 5, 462-466.	3.9	26
96	Exposure to disinfection by-products in swimming pools and biomarkers of genotoxicity and respiratory damage – The PISCINA2 Study. Environment International, 2019, 131, 104988.	4.8	26
97	Novel Chlorination Byproducts of Tryptophan: Initial High-Yield Transformation Products versus Small Molecule Disinfection Byproducts. Environmental Science and Technology Letters, 2020, 7, 149-155.	3.9	26
98	Chlorine and ozone disinfection and disinfection byproducts in postharvest food processing facilities: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1825-1867.	6.6	26
99	Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO ₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater. Environmental Science & Emp; Technology, 2015, 49, 8878-8886.	4.6	24
100	Disinfection Byproduct Recovery during Extraction and Concentration in Preparation for Chemical Analyses or Toxicity Assays. Environmental Science & Eamp; Technology, 2021, 55, 14136-14145.	4.6	23
101	Synthesis and Application of a Quaternary Phosphonium Polymer Coagulant To Avoid <i>N</i> -Nitrosamine Formation. Environmental Science & Environmental	4.6	22
102	Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. Environmental Science & Environmental Sci	4.6	22
103	Optimization of reverse osmosis operational conditions to maximize ammonia removal from the effluent of an anaerobic membrane bioreactor. Environmental Science: Water Research and Technology, 2021, 7, 739-747.	1.2	22
104	Control of nitrosamines during non-potable and de facto wastewater reuse with medium pressure ultraviolet light and preformed monochloramine. Environmental Science: Water Research and Technology, 2016, 2, 502-510.	1.2	21
105	Use of trihalomethanes as a surrogate for haloacetonitrile exposure introduces misclassification bias. Water Research X, 2021, 11, 100089.	2.8	21
106	Evaluation of Histidine Reactivity and Byproduct Formation during Peptide Chlorination. Environmental Science & Environmental	4.6	20
107	Influence of the Method of Reagent Addition on Dichloroacetonitrile Formation during Chloramination. Environmental Science & Eachnology, 2010, 44, 700-706.	4.6	19
108	Pilot UV-AOP Comparison of UV/Hydrogen Peroxide, UV/Free Chlorine, and UV/Monochloramine for the Removal of <i>N</i> -Nitrosodimethylamine (NDMA) and NDMA Precursors. ACS ES&T Water, 2021, 1, 396-406.	2.3	19

#	Article	IF	CITATIONS
109	Bench-scale column evaluation of factors associated with changes in N-nitrosodimethylamine (NDMA) precursor concentrations during drinking water biofiltration. Water Research, 2019, 167, 115103.	5.3	17
110	Transformation of Trace Organic Contaminants from Reverse Osmosis Concentrate by Open-Water Unit-Process Wetlands with and without Ozone Pretreatment. Environmental Science & Emp; Technology, 2020, 54, 16176-16185.	4.6	17
111	Recovery of Clean Water and Ammonia from Domestic Wastewater: Impacts on Embodied Energy and Greenhouse Gas Emissions. Environmental Science & Emp; Technology, 2022, 56, 8712-8721.	4.6	17
112	Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. Nano Letters, 2020, 20, 8719-8724.	4.5	15
113	Removal of Pathogens and Chemicals of Emerging Concern by Pilot-Scale FO-RO Hybrid Units Treating RO Concentrate, Graywater, and Sewage for Centralized and Decentralized Potable Reuse. ACS ES&T Water, 2021, 1, 89-100.	2.3	15
114	Destruction of Methyl Bromide Sorbed to Activated Carbon by Thiosulfate or Electrolysis. Environmental Science & Environmental	4.6	14
115	Comparing industrial and domestic discharges as sources of <i>N</i> -nitrosamines and their chloramine or ozone-reactive precursors. Environmental Science: Water Research and Technology, 2019, 5, 726-736.	1.2	14
116	Exploring Amino Acid Side Chain Decomposition Using Enzymatic Digestion and HPLC-MS: Combined Lysine Transformations in Chlorinated Waters. Analytical Chemistry, 2009, 81, 7650-7659.	3.2	13
117	Behavior of NDMA precursors at 21 full-scale water treatment facilities. Environmental Science: Water Research and Technology, 2018, 4, 1966-1978.	1.2	13
118	Chapter 7 Micropollutants in Water Recycling: A Case Study of N-Nitrosodimethylamine (NDMA) Exposure from Water versus Food. Sustainability Science and Engineering, 2010, , 203-228.	0.6	12
119	Environmental and Human Impacts of Unconventional Energy Development. Environmental Science & Environmental Energy Development.	4.6	11
120	Sulfide-induced reduction of nitrobenzene mediated by different size fractions of rice straw-derived black carbon: A key role played by reactive polysulfide species. Science of the Total Environment, 2020, 748, 141365.	3.9	11
121	Pilot-scale ozone/biological activated carbon treatment of reverse osmosis concentrate: potential for synergism between nitrate and contaminant removal and potable reuse. Environmental Science: Water Research and Technology, 2020, 6, 1421-1431.	1.2	11
122	Control of sulfides and coliphage MS2 using hydrogen peroxide and UV disinfection for non-potable reuse of pilot-scale anaerobic membrane bioreactor effluent. Water Research X, 2021, 11, 100097.	2.8	11
123	Impact of Combined Chlorination and Chloramination Conditions on <i>N</i> â€Nitrosodimethylamine Formation. Journal - American Water Works Association, 2018, 110, 11-24.	0.2	10
124	Formation of N-nitrosamines during the analysis of municipal secondary biological nutrient removal process effluents by US EPA method 521. Chemosphere, 2019, 221, 597-605.	4.2	10
125	Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations. Environmental Science & Eamp; Technology, 2016, 50, 11200-11208.	4.6	9
126	Capture and Reductive Transformation of Halogenated Pesticides by an Activated Carbon-Based Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Electrolysis System for Treatment of Runoff. Environmental Science & Electrolysis System for Electro	4.6	8

#	Article	IF	Citations
127	Sunlight-Driven Chlorate Formation during Produce Irrigation with Chlorine- or Chloramine-Disinfected Water. Environmental Science & Environmental Science & 2021, 55, 14876-14885.	4.6	8
128	Chlorine taste can increase simulated exposure to both fecal contamination and disinfection byproducts in water supplies. Water Research, 2021, 207, 117806.	5.3	8
129	Disinfection byproducts formed during drinking water treatment reveal an export control point for dissolved organic matter in a subalpine headwater stream. Water Research X, 2022, 15, 100144.	2.8	7
130	Tap water and bladder cancer in China. Nature Sustainability, 2022, 5, 643-644.	11.5	7
131	Serum electrolytes can promote hydroxyl radical-initiated biomolecular damage from inflammation. Free Radical Biology and Medicine, 2019, 141, 475-482.	1.3	6
132	Formation of Oleic Acid Chlorohydrins in Vegetables during Postharvest Chlorine Disinfection. Environmental Science & Environm	4.6	6
133	Role of absorber and desorber units and operational conditions for N-nitrosamine formation during amine-based carbon capture. Water Research, 2020, 170, 115299.	5.3	5
134	Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances. ACS Chemical Biology, 2015, 10, 2393-2404.	1.6	4
135	Production of <i>N</i> -Nitrosodimethylamine Precursors by Biofilters Is Highly Dynamic and Affected by Filter Media Type and Backwashing Conditions. ACS ES&T Water, 2021, 1, 661-671.	2.3	3
136	Effects of Intrusion on Disinfection Byproduct Formation in Intermittent Distribution Systems. ACS ES&T Water, 2022, 2, 807-816.	2.3	2
137	SOURCES AND FATE OF NITROSODIMETHYLAMINE (NDMA) AND NDMA PRECURSORS IN MUNICIPAL WASTEWATER TREATMENT PLANTS. Proceedings of the Water Environment Federation, 2004, 2004, 31-46.	0.0	1
138	New Takes on Emerging Contaminants: Preface. Journal of Environmental Sciences, 2017, 62, 1-2.	3.2	1
139	Bridging boundaries: On the contributions of Dr. Michael Plewa to the disinfection byproduct field. Journal of Environmental Sciences, 2022, , .	3.2	0