Christine J Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999, 16, 3-27.	5.0	1,230
2	Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 2017, 109, 84-101.	13.7	621
3	Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiation Research, 2010, 173, 719.	1.5	547
4	Polycaprolactone–b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. Journal of Controlled Release, 2000, 63, 275-286.	9.9	331
5	Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. Journal of Pharmaceutical Sciences, 2004, 93, 132-143.	3.3	306
6	The Effects of Particle Size and Molecular Targeting on the Intratumoral and Subcellular Distribution of Polymeric Nanoparticles. Molecular Pharmaceutics, 2010, 7, 1195-1208.	4.6	302
7	Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels. Journal of Controlled Release, 2009, 138, 214-223.	9.9	298
8	Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1367-1377.	2.6	286
9	The battle of "nano―paclitaxel. Advanced Drug Delivery Reviews, 2017, 122, 20-30.	13.7	270
10	Polycaprolactone-b-poly(ethylene Oxide) Block Copolymer Micelles as a Novel Drug Delivery Vehicle for Neurotrophic Agents FK506 and L-685,818. Bioconjugate Chemistry, 1998, 9, 564-572.	3.6	264
11	Monodisperse Chitosan Nanoparticles for Mucosal Drug Delivery. Biomacromolecules, 2004, 5, 2461-2468.	5.4	241
12	In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 309-319.	4.3	176
13	Poly(ethylene glycol)- <i>b</i> -poly(ε-caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel: Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules, 2010, 11, 1273-1280.	5.4	161
14	Polymeric drug delivery systems for localized cancer chemotherapy. Drug Delivery, 2010, 17, 365-375.	5.7	158
15	Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 161-169.	3.3	152
16	To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. Journal of Controlled Release, 2017, 249, 63-73.	9.9	143
17	The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Advanced Drug Delivery Reviews, 2015, 91, 7-22.	13.7	142
18	Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 118-127.	3.3	140

#	Article	IF	CITATIONS
19	Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. Journal of Controlled Release, 2005, 103, 481-497.	9.9	133
20	Radiotherapy for Cancer: Present and Future. Advanced Drug Delivery Reviews, 2017, 109, 1-2.	13.7	128
21	In Vivo Distribution of Polymeric Nanoparticles at the Whole-Body, Tumor, and Cellular Levels. Pharmaceutical Research, 2010, 27, 2343-2355.	3.5	123
22	Radiosensitization by gold nanoparticles: Will they ever make it to the clinic?. Radiotherapy and Oncology, 2017, 124, 344-356.	0.6	122
23	Synthesis and Physicochemical and Dynamic Mechanical Properties of a Water-Soluble Chitosan Derivative as a Biomaterial. Biomacromolecules, 2006, 7, 2845-2855.	5.4	121
24	Multicellular Tumor Spheroids for Evaluation of Cytotoxicity and Tumor Growth Inhibitory Effects of Nanomedicines In Vitro: A Comparison of Docetaxel-Loaded Block Copolymer Micelles and Taxotere®. PLoS ONE, 2013, 8, e62630.	2.5	118
25	Formulation of Drugs in Block Copolymer Micelles: Drug Loading and Release. Current Pharmaceutical Design, 2006, 12, 4685-4701.	1.9	116
26	Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 20-36.	3.3	115
27	Cellular internalization of PCL20-b-PEO44 block copolymer micelles. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 32-38.	2.6	106
28	Epidermal Growth Factor-Conjugated Poly(ethylene glycol)-block- Poly(δ-valerolactone) Copolymer Micelles for Targeted Delivery of Chemotherapeutics. Bioconjugate Chemistry, 2006, 17, 399-409.	3.6	103
29	In Vivo Performance of a Liposomal Vascular Contrast Agent for CT and MR-Based Image Guidance Applications. Pharmaceutical Research, 2007, 24, 1193-1201.	3.5	103
30	Diblock Copolymer Micelles Deliver Hydrophobic Protoporphyrin IX for Photodynamic Therapy. Photochemistry and Photobiology, 2007, 83, 1505-1512.	2.5	102
31	Lipids and polymers in pharmaceutical technology: Lifelong companions. International Journal of Pharmaceutics, 2019, 558, 128-142.	5.2	101
32	Predicting the Solubility of the Anti-Cancer Agent Docetaxel in Small Molecule Excipients using Computational Methods. Pharmaceutical Research, 2008, 25, 147-157.	3.5	99
33	Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 2021, 175, 113806.	13.7	99
34	Methoxy Poly(ethylene glycol)-block-Poly(δ-valerolactone) Copolymer Micelles for Formulation of Hydrophobic Drugs. Biomacromolecules, 2005, 6, 3119-3128.	5.4	98
35	pH gradient loading of anthracyclines into cholesterol-free liposomes: enhancing drug loading rates through use of ethanol. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 47-60.	2.6	86
36	Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model. Journal of Controlled Release, 2015, 207, 101-111.	9.9	84

#	Article	IF	CITATIONS
37	Biocompatibility of injectable chitosan–phospholipid implant systems. Biomaterials, 2009, 30, 3818-3824.	11.4	82
38	Multimodal Contrast Agent for Combined Computed Tomography and Magnetic Resonance Imaging Applications. Investigative Radiology, 2006, 41, 339-348.	6.2	80
39	Noninvasive Monitoring of the Fate of ¹¹¹ In-Labeled Block Copolymer Micelles by High Resolution and High Sensitivity MicroSPECT/CT Imaging. Molecular Pharmaceutics, 2009, 6, 581-592.	4.6	78
40	Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Advanced Drug Delivery Reviews, 2020, 163-164, 98-124.	13.7	77
41	APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes. Journal of Controlled Release, 2011, 154, 298-305.	9.9	76
42	Overcoming the Road Blocks: Advancement of Block Copolymer Micelles for Cancer Therapy in the Clinic. Molecular Pharmaceutics, 2017, 14, 2503-2517.	4.6	71
43	Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. Journal of Controlled Release, 2014, 178, 69-78.	9.9	69
44	Chemotherapy Dosing Schedule Influences Drug Resistance Development in Ovarian Cancer. Molecular Cancer Therapeutics, 2011, 10, 1289-1299.	4.1	68
45	Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics, 2020, 10, 1960-1980.	10.0	68
46	Morphological Control of Poly(ethylene glycol)- <i>block</i> -poly(ε-caprolactone) Copolymer Aggregates in Aqueous Solution. Biomacromolecules, 2008, 9, 2283-2291.	5.4	67
47	A Mathematical Model of the Enhanced Permeability and Retention Effect for Liposome Transport in Solid Tumors. PLoS ONE, 2013, 8, e81157.	2.5	66
48	The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. Journal of Controlled Release, 2015, 211, 163-170.	9.9	65
49	In vitro and in vivo characterization of a novel biocompatible polymer–lipid implant system for the sustained delivery of paclitaxel. Journal of Controlled Release, 2005, 104, 181-191.	9.9	63
50	Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemotherapy and Pharmacology, 2007, 60, 907-914.	2.3	63
51	Drug release mechanism of paclitaxel from a chitosan–lipid implant system: Effect of swelling, degradation and morphology. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 149-157.	4.3	63
52	Quantitative CT Imaging of the Spatial and Temporal Distribution of Liposomes in a Rabbit Tumor Model. Molecular Pharmaceutics, 2009, 6, 571-580.	4.6	62
53	Hypoxia and Cellular Localization Influence the Radiosensitizing Effect of Gold Nanoparticles (AuNPs) in Breast Cancer Cells. Radiation Research, 2014, 182, 475-488.	1.5	62
54	Effects of sustained and intermittent paclitaxel therapy on tumor repopulation in ovarian cancer. Molecular Cancer Therapeutics, 2008, 7, 630-637.	4.1	61

#	Article	IF	CITATIONS
55	Nano-Sized Assemblies of a PEG-Docetaxel Conjugate as a Formulation Strategy for Docetaxel. Journal of Pharmaceutical Sciences, 2008, 97, 3274-3290.	3.3	59
56	Nanomedicine and tumor heterogeneity: Concept and complex reality. Nano Today, 2016, 11, 402-414.	11.9	59
57	Apoptotic Epidermal Growth Factor (EGF)-Conjugated Block Copolymer Micelles as a Nanotechnology Platform for Targeted Combination Therapy. Molecular Pharmaceutics, 2007, 4, 769-781.	4.6	57
58	Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. Journal of Controlled Release, 2007, 117, 20-27.	9.9	57
59	Radiation and Heat Improve the Delivery and Efficacy of Nanotherapeutics by Modulating Intratumoral Fluid Dynamics. ACS Nano, 2018, 12, 7583-7600.	14.6	55
60	Block Copolymer Micelles Target Auger Electron Radiotherapy to the Nucleus of HER2-Positive Breast Cancer Cells. Biomacromolecules, 2012, 13, 455-465.	5.4	53
61	Differential Role of Organic Anion-Transporting Polypeptides in Estrone-3-Sulphate Uptake by Breast Epithelial Cells and Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 510-519.	2.5	51
62	Hydrogel Containing Silica Shell Cross-Linked Micelles for Ocular Drug Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 627-637.	3.3	50
63	Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. Journal of Controlled Release, 2013, 172, 351-357.	9.9	49
64	Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model. Nanoscale, 2021, 13, 280-291.	5.6	47
65	Synthesis and Characterization of Biodegradable Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 34 Biomacromolecules, 2004, 5, 1810-1817.	7 Td (glyc 5.4	ol)-block-po 46
66	Combination Drug Delivery Strategy for the Treatment of Multidrug Resistant Ovarian Cancer. Molecular Pharmaceutics, 2011, 8, 260-269.	4.6	46
67	Image-based analysis of the size- and time-dependent penetration of polymeric micelles in multicellular tumor spheroids and tumor xenografts. International Journal of Pharmaceutics, 2014, 464, 168-177.	5.2	46
68	Liposome formulation of a novel hydrophobic aryl-imidazole compound for anti-cancer therapy. Cancer Chemotherapy and Pharmacology, 2006, 58, 306-318.	2.3	45
69	Active Targeting of Block Copolymer Micelles with Trastuzumab Fab Fragments and Nuclear Localization Signal Leads to Increased Tumor Uptake and Nuclear Localization in HER2-Overexpressing Xenografts. Molecular Pharmaceutics, 2013, 10, 4229-4241.	4.6	45
70	A multimodal nano agent for image-guided cancer surgery. Biomaterials, 2015, 67, 160-168.	11.4	45
71	Partitioning of Pyrene between "Crew Cut―Block Copolymer Micelles and H2O/DMF Solvent Mixtures. Macromolecules, 1997, 30, 7143-7150.	4.8	44

Synthesis and Characterization of Six-Arm Star Poly(\hat{l} -valerolactone)-block-Methoxy Poly(ethylene) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	CITATIONS
73	Significant Radiation Enhancement Effects by Gold Nanoparticles in Combination with Cisplatin in Triple Negative Breast Cancer Cells and Tumor Xenografts. Radiation Research, 2017, 187, 147-160.	1.5	44
74	Heat-activated drug delivery increases tumor accumulation of synergistic chemotherapies. Journal of Controlled Release, 2019, 308, 197-208.	9.9	42
75	Recent advances in drug delivery strategies for treatment of ovarian cancer. Expert Opinion on Drug Delivery, 2012, 9, 567-583.	5.0	39
76	Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules, 2019, 52, 5231-5244.	4.8	38
77	A Novel Minimally Invasive Technique to Create a Rabbit VX2 Lung Tumor Model for Nano-Sized Image Contrast and Interventional Studies. PLoS ONE, 2013, 8, e67355.	2.5	37
78	Continuous Docetaxel Chemotherapy Improves Therapeutic Efficacy in Murine Models of Ovarian Cancer. Molecular Cancer Therapeutics, 2010, 9, 1820-1830.	4.1	36
79	Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles. Journal of Controlled Release, 2012, 157, 366-374.	9.9	36
80	Intermolecular Interactions and Morphology of Aqueous Polymer/Surfactant Mixtures Containing Cationic Chitosan and Nonionic Sorbitan Esters. Biomacromolecules, 2008, 9, 2146-2152.	5.4	35
81	The impact of sustained and intermittent docetaxel chemotherapy regimens on cognition and neural morphology in healthy mice. Psychopharmacology, 2014, 231, 841-852.	3.1	35
82	Long-circulating poly(ethylene glycol)-coated emulsions to target solid tumors. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 329-338.	4.3	34
83	Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. Journal of Controlled Release, 2018, 282, 35-45.	9.9	33
84	Chitosan–phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity. International Journal of Pharmaceutics, 2009, 377, 76-84.	5.2	32
85	Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Block Copolymers via Controlled Conjugation in Aqueous Media. ACS Omega, 2016, 1, 93-107.	3.5	31
86	Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102484.	3.3	31
87	Multifunctional Block Copolymer Micelles for the Delivery of ¹¹¹ In to EGFR-Positive Breast Cancer Cells for Targeted Auger Electron Radiotherapy. Molecular Pharmaceutics, 2010, 7, 177-186.	4.6	30
88	Systematic design of unimolecular star copolymer micelles using molecular dynamics simulations. Soft Matter, 2010, 6, 5491.	2.7	30
89	Enhancement of docetaxel solubility via conjugation of formulation-compatible moieties. Organic and Biomolecular Chemistry, 2009, 7, 3437.	2.8	29
90	An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels. Journal of Controlled Release, 2012, 158, 379-385.	9.9	29

#	Article	IF	CITATIONS
91	Dual Action Enhancement of Gold Nanoparticle Radiosensitization by Pentamidine in Triple Negative Breast Cancer. Radiation Research, 2016, 185, 549.	1.5	29
92	Engineering Lipobeads:Â Properties of the Hydrogel Core and the Lipid Bilayer Shell. Biomacromolecules, 2004, 5, 2230-2237.	5.4	27
93	Liposome contrast agent for CTâ€based detection and localization of neoplastic and inflammatory lesions in rabbits: validation with FDGâ€PET and histology. Contrast Media and Molecular Imaging, 2010, 5, 147-154.	0.8	27
94	Synthesis of Carboxy-Functionalized Heterobifunctional Poly(ethylene glycol) by a Thiol-Anionic Polymerization Method. Macromolecules, 2006, 39, 6391-6398.	4.8	26
95	Dual-Targeted Delivery of Nanoparticles Encapsulating Paclitaxel and Everolimus: a Novel Strategy to Overcome Breast Cancer Receptor Heterogeneity. Pharmaceutical Research, 2020, 37, 39.	3.5	26
96	Codelivery of Paclitaxel and Everolimus at the Optimal Synergistic Ratio: A Promising Solution for the Treatment of Breast Cancer. Molecular Pharmaceutics, 2018, 15, 3672-3681.	4.6	25
97	Multiâ€arm PEG/Silica Hydrogel for Sustained Ocular Drug Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 216-226.	3.3	24
98	Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease. Molecular Pharmaceutics, 2015, 12, 3973-3985.	4.6	24
99	Ratio-Dependent Synergism of a Doxorubicin and Olaparib Combination in 2D and Spheroid Models of Ovarian Cancer. Molecular Pharmaceutics, 2018, 15, 472-485.	4.6	24
100	Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs. Science Advances, 2020, 6, .	10.3	22
101	Thermosensitive nanomedicines could revolutionize thermal therapy in oncology. Nano Today, 2017, 16, 9-13.	11.9	20
102	Influence of molecular organization and interactions on drug release for an injectable polymer-lipid blend. International Journal of Pharmaceutics, 2008, 360, 83-90.	5.2	19
103	Factors Controlling Drug Release in Cross-linked Poly(valerolactone) Based Matrices. Molecular Pharmaceutics, 2018, 15, 1565-1577.	4.6	19
104	Development and pharmacokinetic evaluation of a self-nanoemulsifying drug delivery system for the oral delivery of cannabidiol. European Journal of Pharmaceutical Sciences, 2022, 168, 106058.	4.0	19
105	Expression of membrane transporters and metabolic enzymes involved in estrone-3-sulphate disposition in human breast tumour tissues. Breast Cancer Research and Treatment, 2014, 145, 647-661.	2.5	18
106	Why I'm Holding onto Hope for Nano in Oncology. Molecular Pharmaceutics, 2016, 13, 2603-2604.	4.6	18
107	Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma [*] . Journal of Drug Targeting, 2016, 24, 865-877.	4.4	18
108	Development of a liposome formulation for improved biodistribution and tumor accumulation of pentamidine for oncology applications. International Journal of Pharmaceutics, 2015, 488, 154-164.	5.2	16

#	Article	IF	CITATIONS
109	Manganese-porphyrin-enhanced MRI for the detection of cancer cells: A quantitative in vitro investigation with multiple clinical subtypes of breast cancer. PLoS ONE, 2018, 13, e0196998.	2.5	16
110	In Vivo Evaluation of Dual-Targeted Nanoparticles Encapsulating Paclitaxel and Everolimus. Cancers, 2019, 11, 752.	3.7	16
111	Determining critical parameters that influence in vitro performance characteristics of a thermosensitive liposome formulation of vinorelbine. Journal of Controlled Release, 2020, 328, 551-561.	9.9	16
112	Estrone-3-Sulphate, a Potential Novel Ligand for Targeting Breast Cancers. PLoS ONE, 2013, 8, e64069.	2.5	15
113	Neoplastic cell response to tiopronin-coated gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 264-273.	3.3	14
114	Postalkylation of a Common mPEG- <i>b</i> -PAGE Precursor to Produce Tunable Morphologies of Spheres, Filomicelles, Disks, and Polymersomes. ACS Macro Letters, 2016, 5, 128-133.	4.8	14
115	Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules, 2020, 21, 2014-2023.	5.4	14
116	Synthesis and Physicochemical and Dynamic Mechanical Properties of a Water-Soluble Chitosan Derivative as a Biomaterial. Biomacromolecules, 2006, 7, 3548-3548.	5.4	13
117	Tumor microenvironment determines response to a heat-activated thermosensitive liposome formulation of cisplatin in cervical carcinoma. Journal of Controlled Release, 2017, 262, 182-191.	9.9	13
118	Docetaxel Distribution Following Intraperitoneal Administration in Mice. Journal of Pharmacy and Pharmaceutical Sciences, 2011, 14, 90.	2.1	12
119	Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1069-1090.	3.5	12
120	BRCA Status Does Not Predict Synergism of a Carboplatin and Olaparib Combination in High-Grade Serous Ovarian Cancer Cell Lines. Molecular Pharmaceutics, 2018, 15, 2742-2753.	4.6	12
121	Nano-sized Advanced Delivery Systems as Parenteral Formulation Strategies for Hydrophobic Anti-cancer Drugs. , 2009, , 349-383.		11
122	Comparison of Computed Tomography– and Optical Image–Based Assessment of Liposome Distribution. Molecular Imaging, 2013, 12, 7290.2012.00028.	1.4	11
123	Custom-designed Laser-based Heating Apparatus for Triggered Release of Cisplatin from Thermosensitive Liposomes with Magnetic Resonance Image Guidance. Journal of Visualized Experiments, 2015, , e53055.	0.3	11
124	Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies. Journal of Controlled Release, 2015, 219, 295-312.	9.9	11
125	Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. Journal of Controlled Release, 2015, 219, 313-330.	9.9	10
126	Drug governs the morphology of polyalkylated block copolymer aggregates. Nanoscale, 2017, 9, 2417-2423.	5.6	10

#	Article	IF	CITATIONS
127	The question of toxicity of nanomaterials and nanoparticles. Journal of Controlled Release, 2019, 304, 288.	9.9	9
128	â€~Hip to be square': Designing PLGA formulations for the future. Journal of Controlled Release, 2020, 319, 487-488.	9.9	9
129	Relationship between composition and properties for stable chitosan films containing lipid microdomains. Journal of Applied Polymer Science, 2007, 103, 3453-3460.	2.6	8
130	Continuous Intraperitoneal Carboplatin Delivery for the Treatment of Late-Stage Ovarian Cancer. Molecular Pharmaceutics, 2013, 10, 3315-3322.	4.6	8
131	125I-Labelled 2-Iodoestrone-3-sulfate: synthesis, characterization and OATP mediated transport studies in hormone dependent and independent breast cancer cells. Nuclear Medicine and Biology, 2015, 42, 274-282.	0.6	7
132	Heat-activated nanomedicine formulation improves the anticancer potential of the HSP90 inhibitor luminespib in vitro. Scientific Reports, 2021, 11, 11103.	3.3	7
133	Spatial Measurements of Perfusion, Interstitial Fluid Pressure and Liposomes Accumulation in Solid Tumors. Journal of Visualized Experiments, 2016, , .	0.3	6
134	Survivin silencing improved the cytotoxicity of carboplatin and melphalan in Y79 and primary retinoblastoma cells. International Journal of Pharmaceutics, 2020, 589, 119824.	5.2	6
135	Potential Limitations of Bioluminescent Xenograft Mouse Models: A Systematic Review. Journal of Pharmacy and Pharmaceutical Sciences, 2020, 23, 177-199.	2.1	6
136	Cross-linked valerolactone copolymer implants with tailorable biodegradation, loading and in vitro release of paclitaxel. European Journal of Pharmaceutical Sciences, 2021, 162, 105808.	4.0	5
137	Polymeric Micelles for Formulation of Anti-Cancer Drugs. , 2006, , 317-355.		4
138	What do we do next?. Journal of Controlled Release, 2019, 302, 203.	9.9	4
139	The integration of hyperthermia and drug delivery. Advanced Drug Delivery Reviews, 2020, 163-164, 1-2.	13.7	4
140	Shifting the Paradigm on Cannabis Safety. Cannabis and Cannabinoid Research, 2022, 7, 3-10.	2.9	4
141	Assessment of a liposomal CT/optical contrast agent for image-guided head and neck surgery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102327.	3.3	4
142	Comparison of computed tomography- and optical image-based assessment of liposome distribution. Molecular Imaging, 2013, 12, 148-60.	1.4	4
143	Longitudinal vascular imaging using a novel nano-encapsulated CT and MR contrast agent. , 2007, , .		3
144	Nanomedicine researchers: Slow down to speed up. Journal of Controlled Release, 2019, 315, 214-215.	9.9	3

#	Article	IF	CITATIONS
145	Poly(δ-valerolactone-co-allyl-δ-valerolactone) cross-linked microparticles: Formulation, characterization and biocompatibility. Journal of Pharmaceutical Sciences, 2021, 110, 2771-2777.	3.3	3
146	Long Circulation and Tumor Accumulation. , 2013, , 543-571.		3
147	Anionic Polymerization of an Amphiphilic Copolymer for Preparation of Block Copolymer Micelles Stabilized by π-π Stacking Interactions. Journal of Visualized Experiments, 2016, , .	0.3	2
148	Development of a Bioluminescent BRCA1-Deficient Xenograft Model of Disseminated, High-Grade Serous Ovarian Cancer. International Journal of Molecular Sciences, 2019, 20, 2498.	4.1	2
149	Nanoengineered multimodal contrast agent for medical image guidance. , 2005, , .		1
150	Improved CT and MR image registration with the introduction of a dual-modality contrast agent: performance assessment using quantitative and information theoretic methods. , 2008, , .		1
151	Quantitative CT Imaging of the Spatial and Temporal Distribution of Liposomes in a Rabbit Tumor Model. Molecular Pharmaceutics, 2009, 6, 1040-1040.	4.6	1
152	Delivery of smaller gold nanoparticles by liposomal incorporation. , 2010, , .		1
153	Thermosensitive Depot-Forming Injectable Phosphatidylcholine Blends Tailored for Localized Drug Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 3623-3631.	3.3	1
154	Nanosystems for Multimodality In vivo Imaging. Fundamental Biomedical Technologies, 2008, , 409-430.	0.2	1
155	Novel drug-delivery strategies for the treatment of ovarian cancer. Expert Review of Obstetrics and Gynecology, 2007, 2, 587-593.	0.4	0
156	Sixth International Nanomedicine and Drug Delivery Symposium (NanoDDS'08). Journal of Controlled Release, 2009, 138, 187.	9.9	0
157	Nanotechnology for Multimodality Imaging: Applications in Disease Detection and Treatment Guidance. Frontiers in Nanobiomedical Research, 2014, , 145-193.	0.1	0
158	Editorial. Drug Delivery and Translational Research, 2017, 7, 465-465.	5.8	0
159	Does artificial intelligence have the potential to transform drug formulation development?. Journal of Controlled Release, 2019, 311-312, 326-327.	9.9	0
160	Can we overcome the most significant barrier to treatment of neurodegenerative disorders?. Journal of Controlled Release, 2019, 303, 319-320.	9.9	0
161	The power of integrating imaging throughout the drug development process. Journal of Controlled Release, 2020, 317, 386-388.	9.9	0
162	Turning the Page on 2020. Journal of Controlled Release, 2021, 329, 1287.	9.9	0

#	ARTICLE	IF	CITATIONS
163	Pituitary Cancer. , 2007, , 1-5.		0
164	Chapter 6. The Role of Imaging in Nanomedicine Development and Clinical Translation. RSC Drug Discovery Series, 2016, , 151-181.	0.3	0