List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4749175/publications.pdf Version: 2024-02-01

DETED DÃODSCH

#	Article	IF	CITATIONS
1	Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed. Environmental Science and Pollution Research, 2022, 29, 20186-20199.	5.3	9
2	Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization. Geoderma, 2022, 407, 115559.	5.1	17
3	Nitrite accumulation and impairment of N2O reduction explains contrasting soil denitrification phenotypes. Soil Biology and Biochemistry, 2022, 166, 108529.	8.8	8
4	Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: An in situ 15N labeling study. Science of the Total Environment, 2022, 816, 151596.	8.0	22
5	Pigeon pea biochar addition in tropical Arenosol under maize increases gross nitrification rate without an effect on nitrous oxide emission. Plant and Soil, 2022, 474, 195-212.	3.7	3
6	Soil acidification and loss of base cations in a subtropical agricultural watershed. Science of the Total Environment, 2022, 827, 154338.	8.0	22
7	Winter N ₂ O accumulation and emission in sub-boreal grassland soil depend on clover proportion and soil pH. Environmental Research Communications, 2021, 3, 015001.	2.3	11
8	Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. , 2021, , 109-139.		1
9	Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization. Environmental Science and Pollution Research, 2021, 28, 63945-63964.	5.3	2
10	Topography-related controls on N2O emission and CH4 uptake in a tropical rainforest catchment. Science of the Total Environment, 2021, 775, 145616.	8.0	8
11	Topographic differences in nitrogen cycling mediate nitrogen retention in a subtropical, N-saturated forest catchment. Soil Biology and Biochemistry, 2021, 159, 108303.	8.8	17
12	Calibration of the EU-Rotate_N model with measured C and N mineralization from potential fertilizers and evaluation of its prediction of crop and soil data from a vegetable field trial. European Journal of Agronomy, 2021, 129, 126336.	4.1	3
13	Clover increases N2O emissions in boreal leys during winter. Soil Biology and Biochemistry, 2021, 163, 108459.	8.8	3
14	Boreal Headwater Catchment as Hot Spot of Carbon Processing From Headwater to Fjord. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006359.	3.0	4
15	Nitrification is the primary source for NO in Nâ€ s aturated subtropical forest soils: Results from in situ 15 N labeling. Rapid Communications in Mass Spectrometry, 2020, 34, e8700.	1.5	4
16	Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning. Soil Biology and Biochemistry, 2020, 150, 108006.	8.8	30
17	Phosphorus Availability Promotes Bacterial DOC-Mineralization, but Not Cumulative CO2-Production. Frontiers in Microbiology, 2020, 11, 569879.	3.5	5
18	Contingent Effects of Liming on N2O-Emissions Driven by Autotrophic Nitrification. Frontiers in Environmental Science, 2020, 8, .	3.3	25

#	Article	IF	CITATIONS
19	Effect of legume intercropping on N ₂ O emissions and CH ₄ uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences, 2020, 17, 345-359.	3.3	26
20	Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing. Science of the Total Environment, 2020, 724, 138140.	8.0	11
21	Propionic acid bacteria enhance ruminal feed degradation and reduce methane production <i>in vitro</i> . Acta Agriculturae Scandinavica - Section A: Animal Science, 2020, 69, 169-175.	0.2	18
22	Soil N2O emission potential falls along a denitrification phenotype gradient linked to differences in microbiome, rainfall and carbon availability. Soil Biology and Biochemistry, 2020, 150, 108004.	8.8	23
23	Effects of nitrogen split application on seasonal N2O emissions in southeast Norway. Nutrient Cycling in Agroecosystems, 2019, 115, 41-56.	2.2	17
24	Bradyrhizobial inoculation and P application effects on haricot and mung beans in the Ethiopian Rift Valley. Plant and Soil, 2019, 442, 271-284.	3.7	12
25	Physical constraints for respiration in microbial hotspots in soil and their importance for denitrification. Biogeosciences, 2019, 16, 3665-3678.	3.3	30
26	Humid Subtropical Forests Constitute a Net Methane Source: A Catchmentâ€Scale Study. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2927-2942.	3.0	4
27	Using metagenomics to reveal landscape scale patterns of denitrifiers in a montane forest ecosystem. Soil Biology and Biochemistry, 2019, 138, 107585.	8.8	16
28	Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in Oregon forest soils. Soil Biology and Biochemistry, 2019, 139, 107612.	8.8	36
29	The effect of a biochar temperature series on denitrification: which biochar properties matter?. Soil Biology and Biochemistry, 2019, 135, 173-183.	8.8	49
30	Denitrification as a major regional nitrogen sink in subtropical forest catchments: Evidence from multiâ€site dual nitrate isotopes. Global Change Biology, 2019, 25, 1765-1778.	9.5	30
31	Controlled induction of denitrification in Pseudomonas aureofaciens: A simplified denitrifier method for dual isotope analysis in NO3â^. Science of the Total Environment, 2018, 633, 1370-1378.	8.0	14
32	Denitrification in Soil Aggregate Analogues-Effect of Aggregate Size and Oxygen Diffusion. Frontiers in Environmental Science, 2018, 6, .	3.3	65
33	Modified Method for Trapping and Analyzing ¹⁵ N in NO Released from Soils. Analytical Chemistry, 2017, 89, 4124-4130.	6.5	2
34	Distinct fates of atmogenic NH4 + and NO3 â^ in subtropical, N-saturated forest soils. Biogeochemistry, 2017, 133, 279-294.	3.5	27
35	Spatial and temporal variability of soil nitric oxide emissions in N-saturated subtropical forest. Biogeochemistry, 2017, 134, 337-351.	3.5	11
36	Biological nitrogen fixation and transfer in a high latitude grass-clover grassland under different management practices. Plant and Soil, 2017, 421, 107-122.	3.7	6

#	Article	IF	CITATIONS
37	Nitric oxide emission response to soil moisture is linked to transcriptional activity of functional microbial groups. Soil Biology and Biochemistry, 2017, 115, 337-345.	8.8	11
38	Phosphorus addition mitigates N ₂ O and CH ₄ emissions in N-saturated subtropical forest, SW China. Biogeosciences, 2017, 14, 3097-3109.	3.3	25
39	Effects of tillage practice on soil structure, N2O emissions and economics in cereal production under current socio-economic conditions in central Bosnia and Herzegovina. PLoS ONE, 2017, 12, e0187681.	2.5	17
40	Spatial variation in soil pH controls off-season N2O emission in an agricultural soil. Soil Biology and Biochemistry, 2016, 99, 36-46.	8.8	94
41	Mechanism leading to N2O production in wastewater treating biofilm systems. Reviews in Environmental Science and Biotechnology, 2016, 15, 355-378.	8.1	40
42	Multiyear dual nitrate isotope signatures suggest that Nâ€saturated subtropical forested catchments can act as robust N sinks. Global Change Biology, 2016, 22, 3662-3674.	9.5	33
43	Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry, 2015, 126, 211-225.	3.5	77
44	Carbon Dioxide and Methane Formation in Norway Spruce Stems Infected by White-Rot Fungi. Forests, 2015, 6, 3304-3325.	2.1	20
45	pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Frontiers in Microbiology, 2015, 6, 961.	3.5	70
46	Higher N <mml:math <br="" altimg="si11.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> O emission by intensified crop production in South Asia. Global Ecology and Conservation, 2015, 4, 176-184.	2.1	7
47	Effect of fertilization rate and ploughing time on nitrous oxide emissions in a long-term cereal trail in south east Norway. Biology and Fertility of Soils, 2015, 51, 353-365.	4.3	4
48	Nitrous oxide emissions in a biofilm loaded with different mixtures of concentrated household wastewater. International Journal of Environmental Science and Technology, 2015, 12, 3405-3416.	3.5	11
49	Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils. PLoS ONE, 2015, 10, e0138781.	2.5	131
50	Fluxes of CH ₄ , N ₂ O, and kinetics of denitrification in disturbed and undisturbed forest soil in India. Canadian Journal of Soil Science, 2014, 94, 237-249.	1.2	5
51	Nitrous oxide emissions from a fertile grassland in Western Norway following the application of inorganic and organic fertilizers. Nutrient Cycling in Agroecosystems, 2014, 98, 71-85.	2.2	13
52	The importance of denitrification for N2O emissions from an N-saturated forest in SW China: results from in situ 15N labeling experiments. Biogeochemistry, 2013, 116, 103-117.	3.5	43
53	Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: Implications for the expression of denitrification in ex situ experiments. Soil Biology and Biochemistry, 2013, 57, 606-614.	8.8	44
54	Functional traits of denitrification in a subtropical forest catchment in China with high atmogenic N deposition. Soil Biology and Biochemistry, 2013, 57, 577-586.	8.8	33

#	Article	IF	CITATIONS
55	Sorption of Pure N ₂ O to Biochars and Other Organic and Inorganic Materials under Anhydrous Conditions. Environmental Science & Technology, 2013, 47, 7704-7712.	10.0	103
56	Sequential extraction of denitrifying organisms from soils; strongly attached cells produce less N2O than loosely attached cells. Soil Biology and Biochemistry, 2013, 67, 62-69.	8.8	10
57	The significance of early accumulation of nanomolar concentrations of NO as an inducer of denitrification. FEMS Microbiology Ecology, 2013, 83, 672-684.	2.7	17
58	Spatial and temporal variability of N ₂ O emissions in a subtropical forest catchment in China. Biogeosciences, 2013, 10, 1309-1321.	3.3	50
59	N ₂ O emission from organic barley cultivation as affected by green manure management. Biogeosciences, 2012, 9, 2747-2759.	3.3	27
60	Community-specific pH response of denitrification: experiments with cells extracted from organic soils. FEMS Microbiology Ecology, 2012, 79, 530-541.	2.7	58
61	Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. FEMS Microbiology Ecology, 2012, 79, 542-554.	2.7	56
62	Soil acidification by intensified crop production in South Asia results in higher N2O/(N2Â+ÂN2O) product ratios of denitrification. Soil Biology and Biochemistry, 2012, 55, 104-112.	8.8	60
63	Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiology Ecology, 2011, 76, 541-552.	2.7	53
64	Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2âÂ^Â' and O2 concentrations. FEMS Microbiology Ecology, 2008, 65, 102-112.	2.7	141
65	Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. Journal of Microbiological Methods, 2007, 71, 202-211.	1.6	217
66	Nitrous Oxide Emission and Global Changes: Modeling Approaches. , 2007, , 381-395.		10
67	Simplified preparation for the δ15N-analysis in soil NO3- by the denitrifier method. Soil Biology and Biochemistry, 2007, 39, 1907-1915.	8.8	13
68	The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biology and Biochemistry, 2007, 39, 2048-2057.	8.8	191
69	Modelling soil anaerobiosis from water retention characteristics and soil respiration. Soil Biology and Biochemistry, 2006, 38, 2637-2644.	8.8	32
70	N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology and Biochemistry, 2006, 38, 3411-3420.	8.8	155
71	Overwinter greenhouse gas fluxes in two contrasting agricultural habitats. Nutrient Cycling in Agroecosystems, 2004, 70, 117-133.	2.2	81
72	Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biology and Biochemistry, 2002, 34, 1797-1806.	8.8	209

#	Article	IF	CITATIONS
73	Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agriculture, Ecosystems and Environment, 2002, 91, 175-189.	5.3	255
74	Comparison of denitrifying communities in organic soils: kinetics of NOâ^'3 and N2O reduction. Soil Biology and Biochemistry, 2000, 32, 833-843.	8.8	136
75	Title is missing!. Nutrient Cycling in Agroecosystems, 1998, 52, 77-105.	2.2	214
76	The influence of nitrate and ammonium fertilization on N2O release and CH4 uptake of a well-drained topsoil demonstrated by a soil microcosm experiment. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 499-503.	0.4	25
77	Influence of Cattle Wastes on Nitrous Oxide and Methane Fluxes in Pasture Land. Journal of Environmental Quality, 1996, 25, 1366-1370.	2.0	110
78	Seasonal variation of N2O and CH4fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research, 1995, 100, 23115.	3.3	260