Francois Delhommeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4748660/publications.pdf

Version: 2024-02-01

36 papers 7,868 citations

331670 21 h-index 35 g-index

37 all docs

37 docs citations

37 times ranked

8071 citing authors

#	Article	IF	CITATIONS
1	Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms. Leukemia, 2022, 36, 126-137.	7.2	10
2	Macrophage migration inhibitory factor is overproduced through EGR1 in TET2low resting monocytes. Communications Biology, 2022, 5, 110.	4.4	8
3	Prognostic impact of early minimal residual disease combined with complete molecular evaluation in acute myeloid leukemia with mutated <i>NPM1</i> : a single center study. Leukemia and Lymphoma, 2022, , 1-9.	1.3	O
4	Isocitrate dehydrogenase inhibitors as a bridge to allogeneic stem cell transplant in relapsed or refractory acute myeloid leukaemia. British Journal of Haematology, 2022, 198, 780-784.	2.5	1
5	Shwachmanâ€Diamond syndrome and solid tumors: Three new patients from the French Registry for Severe Chronic Neutropenia and literature review. Pediatric Blood and Cancer, 2021, 68, e29071.	1.5	4
6	Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells. Leukemia, 2021, , .	7.2	7
7	High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. Blood Advances, 2020, 4, 3550-3557.	5.2	38
8	Systemic Dysfunction of Osteoblast Differentiation in Adipose-Derived Stem Cells from Patients with Multiple Myeloma. Cells, 2019, 8, 441.	4.1	11
9	Control in dormancy or eradication of cancer stem cells: Mathematical modeling and stability issues. Journal of Theoretical Biology, 2018, 449, 103-123.	1.7	11
10	TP53 mutations: the dawn of Shwachman clones. Blood, 2018, 131, 376-377.	1.4	8
11	Genetic Hierarchy of Acute Myeloid Leukemia: From Clonal Hematopoiesis to Molecular Residual Disease. International Journal of Molecular Sciences, 2018, 19, 3850.	4.1	24
12	Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica, 2017, 102, 1227-1237.	3.5	45
13	Reed Sternberg cell/lymphocyte rosettes in a bone marrow aspirate leading to the diagnosis of Hodgkin lymphoma. British Journal of Haematology, 2016, 175, 557-557.	2.5	1
14	Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nature Communications, 2016, 7, 12475.	12.8	95
15	TET2 Deficiency Inhibits Mesoderm and Hematopoietic Differentiation in Human Embryonic Stem Cells. Stem Cells, 2014, 32, 2084-2097.	3.2	34
16	Interest of cytogenetic and FISH evaluation for prognosis evaluation in 198 patients with acute myeloid leukemia in first complete remission in a single institution. Leukemia Research, 2014, 38, 907-912.	0.8	6
17	Clonal architecture of chronic myelomonocytic leukemias. Blood, 2013, 121, 2186-2198.	1.4	232
18	The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood, 2012, 119, 1190-1199.	1.4	34

#	Article	IF	CITATIONS
19	Role of TET2 Mutations in Myeloproliferative Neoplasms. Current Hematologic Malignancy Reports, 2012, 7, 57-64.	2.3	32
20	The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica, 2011, 96, 590-601.	3.5	17
21	Extent of hematopoietic involvement by TET2 mutations in JAK2V617F polycythemia vera. Haematologica, 2011, 96, 775-778.	3.5	25
22	TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and IsÂa Recurrent Event during Human Lymphomagenesis. Cancer Cell, 2011, 20, 25-38.	16.8	792
23	TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and IsÂa Recurrent Event during Human Lymphomagenesis. Cancer Cell, 2011, 20, 276.	16.8	3
24	New mutations and pathogenesis of myeloproliferative neoplasms. Blood, 2011, 118, 1723-1735.	1.4	346
25	Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood, 2011, 118, 2551-2555.	1.4	163
26	Two routes to leukemic transformation after a JAK2 mutation–positive myeloproliferative neoplasm. Blood, 2010, 115, 2891-2900.	1.4	269
27	Molecular aspects of myeloproliferative neoplasms. International Journal of Hematology, 2010, 91, 165-173.	1.6	63
28	Primary Plasma Cell Leukemia Mimicking an Adult T-Cell Leukemia-Lymphoma. Acta Cytologica, 2010, 54, 187-189.	1.3	3
29	Mutation in <i>TET2</i> in Myeloid Cancers. New England Journal of Medicine, 2009, 360, 2289-2301.	27.0	1,614
30	Analysis of the Ten-Eleven Translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood, 2009, 114, 1628-1632.	1.4	96
31	The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood, 2008, 112, 2429-2438.	1.4	101
32	Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood, 2007, 109, 71-77.	1.4	154
33	The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood, 2007, 110, 1013-1021.	1.4	172
34	Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood, 2006, 108, 346-352.	1.4	221
35	A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 2005, 434, 1144-1148.	27.8	3,221
36	Quantification of Toxoplasma gondii in Amniotic Fluid by Rapid Cycle Real-Time PCR., 2002, , 133-138.		1