Yunqian Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747989/publications.pdf

Version: 2024-02-01

236925 110387 5,356 61 25 64 h-index citations g-index papers 66 66 66 7348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 2019, 119, 5298-5415.	47.7	2,814
2	Synthesis of Anatase TiO ₂ Nanocrystals with Exposed {001} Facets. Nano Letters, 2009, 9, 2455-2459.	9.1	380
3	Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polymers for Advanced Technologies, 2011, 22, 326-338.	3.2	307
4	The physical chemistry and materials science behind sinter-resistant catalysts. Chemical Society Reviews, 2018, 47, 4314-4331.	38.1	236
5	A Sinterâ€Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO ₂ Nanofibers and Covered by Porous Silica. Angewandte Chemie - International Edition, 2010, 49, 8165-8168.	13.8	125
6	Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Particle and Particle Systems Characterization, 2014, 31, 597-604.	2.3	124
7	Facile Synthesis of Fiveâ€fold Twinned, Starfishâ€like Rhodium Nanocrystals by Eliminating Oxidative Etching with a Chlorideâ€Free Precursor. Angewandte Chemie - International Edition, 2010, 49, 5296-5300.	13.8	97
8	The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 2021, 13, 1854.	4.5	88
9	Coupling of Hierarchical Al2O3/TiO2 Nanofibers into 3D Photothermal Aerogels Toward Simultaneous Water Evaporation and Purification. Advanced Fiber Materials, 2020, 2, 93-104.	16.1	81
10	Graphene-wrapped TiO ₂ nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. Journal of Materials Chemistry A, 2014, 2, 1060-1067.	10.3	75
11	The role of three-dimensional printing in healthcare and medicine. Materials and Design, 2020, 194, 108940.	7.0	73
12	Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.	6.7	56
13	Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes. Journal of Materials Chemistry, 2011, 21, 18174.	6.7	53
14	Porous ceramic nanofibers as new catalysts toward heterogeneous reactions. Composites Communications, 2019, 15, 168-178.	6.3	39
15	Preparation and characterization of Pt/TiO 2 nanofibers catalysts for methanol electro-oxidation. Electrochimica Acta, 2015, 178, 74-79.	5.2	38
16	Synergistic effects between polyvinylpyrrolidone and oxygen vacancies on improving the oxidase-mimetic activity of flower-like CeO ₂ nanozymes. Nanoscale, 2020, 12, 19104-19111.	5.6	37
17	Non-contact, fibrous cellulose acetate/aluminum flexible electronic-sensor for humidity detecting. Composites Communications, 2020, 20, 100347.	6.3	37
18	Gradient Vertical Channels within Aerogels Based on N-Doped Graphene Meshes toward Efficient and Salt-Resistant Solar Evaporation. ACS Sustainable Chemistry and Engineering, 2020, 8, 4955-4965.	6.7	36

#	Article	IF	CITATIONS
19	Hierarchical nanostructures of K-birnessite nanoplates on anatase nanofibers and their application for decoloration of dye solution. Journal of Materials Chemistry, 2010, 20, 3157.	6.7	35
20	Unusual Hollow Al ₂ O ₃ Nanofibers with Loofah-Like Skins: Intriguing Catalyst Supports for Thermal Stabilization of Pt Nanocrystals. ACS Applied Materials & Diterfaces, 2017, 9, 21258-21266.	8.0	35
21	Gradient-aligned Au/graphene meshes with confined heat at multiple levels for solar evaporation and anti-gravity catalytic conversion. Journal of Materials Chemistry A, 2020, 8, 16570-16581.	10.3	32
22	Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding. Composites Communications, 2021, 24, 100632.	6.3	32
23	A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. Journal of Materials Chemistry A, 2021, 9, 11013-11024.	10.3	31
24	<i>In situ</i> growth of hierarchical Al ₂ O ₃ nanostructures onto TiO ₂ nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal. Nanotechnology, 2018, 29, 345607.	2.6	30
25	Electronic textiles based on aligned electrospun belt-like cellulose acetate nanofibers and graphene sheets: portable, scalable and eco-friendly strain sensor. Nanotechnology, 2019, 30, 045602.	2.6	29
26	New versatile Pt supports composed of graphene sheets decorated by Fe ₂ O ₃ nanorods and N-dopants with high activity based on improved metal/support interactions. Journal of Materials Chemistry A, 2015, 3, 125-130.	10.3	25
27	A New Insight of the Photothermal Effect on the Highly Efficient Visible-Light-Driven Photocatalytic Performance of Novel-Designed TiO ₂ Rambutan-Like Microspheres Decorated by Au Nanorods. Particle and Particle Systems Characterization, 2016, 33, 140-149.	2.3	25
28	Graphene-Based Modulation on the Growth of Urchin-like Na ₂ Ti ₃ O ₇ Microspheres for Photothermally Enhanced H ₂ Generation from Ammonia Borane. ACS Applied Nano Materials, 2020, 3, 2713-2722.	5.0	22
29	N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. Journal of Materials Research, 2014, 29, 1408-1416.	2.6	21
30	Surfaceâ€Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions. ChemSusChem, 2016, 9, 2912-2916.	6.8	21
31	Recent antioxidative nanomaterials toward wound dressing and disease treatment via ROS scavenging. Materials Today Nano, 2022, 17, 100149.	4.6	21
32	Bandgap control of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Fe $\langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle$ nanozymes and their superior visible light promoted peroxidase-like catalytic activity. Nanotechnology, 2018, 29, 465704.	2.6	19
33	Novel photocatalyst gold nanoparticles with dumbbell-like structure and their superiorly photocatalytic performance for ammonia borane hydrolysis. Nanotechnology, 2018, 29, 165707.	2.6	16
34	Shape manipulation of porous CeO2 nanofibers: facile fabrication, growth mechanism and catalytic elimination of soot particulates. Journal of Materials Science, 2019, 54, 10141-10152.	3.7	15
35	Synthesis of carbazole-based dendrimer: host material for highly efficient solution-processed blue organic electrophosphorescent diodes. Tetrahedron, 2012, 68, 5800-5805.	1.9	13
36	Stabilizing 3Ânm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions. Chemical Engineering Journal, 2020, 401, 126013.	12.7	13

#	Article	IF	CITATIONS
37	Exceptionally thermal-stable Al2O3/TiO2 nanofibers by depressing surface-initiated grain growth as new supports for anti-sintering Pt nanoparticles. Materials Today Nano, 2020, 11, 100088.	4.6	13
38	Selective Etching of Nâ€Doped Graphene Meshes as Metalâ€Free Catalyst with Tunable Kinetics, High Activity and the Origin of New Catalytic Behaviors. Particle and Particle Systems Characterization, 2018, 35, 1700395.	2.3	12
39	Smart-simulation derived elastic 3D fibrous aerogels with rigid oxide elements and all-in-one multifunctions. Chemical Engineering Journal, 2022, 437, 135444.	12.7	12
40	Synthesis of new bipolar materials based on diphenylphosphine oxide and triphenylamine units: efficient host for deep-blue phosphorescent organic light-emitting diodes. Tetrahedron, 2012, 68, 9672-9678.	1.9	11
41	Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO ₂ sheets towards hydrogenation reaction. Nanotechnology, 2018, 29, 245703.	2.6	11
42	A carbazole-based dendritic host material for efficient solution-processed blue phosphorescent OLEDs. Dyes and Pigments, 2013, 97, 286-290.	3.7	10
43	Efficient energy transfer in a new hybrid diphenylfluorene derivative–CdS quantum dot nanocomposite. Nanotechnology, 2013, 24, 435704.	2.6	10
44	Au nano dumbbells catalyzed the cutting of graphene oxide sheets upon plasmon-enhanced reduction. RSC Advances, 2016, 6, 46218-46225.	3.6	10
45	Graphene sheets manipulated the thermal-stability of ultrasmall Pt nanoparticles supported on porous Fe ₂ O ₃ nanocrystals against sintering. RSC Advances, 2017, 7, 16379-16386.	3.6	9
46	Combining in-situ TEM observations and theoretical calculation for revealing the thermal stability of CeO2 nanoflowers. Nano Research, 2022, 15, 1319-1326.	10.4	9
47	One stone two birds: a sinter-resistant TiO ₂ nanofiber-based unbroken mat enables PM capture and <i>in situ</i>	5.6	9
48	A Solidâ€State Electrochemiluminescence Ethanol Biosensor Based on Electrogenerated Poly(pyrroleâ€tris(2,2′â€bipyridyl)ruthenium(II)) Film/Alcohol Dehydrogenase/Laponite Composite. Electroanalysis, 2013, 25, 697-702.	2.9	7
49	Surface Engineering of Defective Hematite Nanostructures Coupled by Graphene Sheets with Enhanced Photoelectrochemical Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 12750-12759.	6.7	6
50	Graphene-based modulation on the hierarchical growth of Al2O3 heterojunctions outside TiO2 nanofibers via a surfactant-free approach. Composites Communications, 2020, 21, 100394.	6.3	6
51	Constructing fibril-in-tube structures in ultrathin CeO2-based nanofibers as the ideal support for stabilizing Pt nanoparticles. Materials Today Chemistry, 2020, 17, 100333.	3.5	6
52	Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomedical Materials (Bristol), 2022, 17, 035011.	3.3	6
53	Stimulus-Responsive Graphene with Periodical Wrinkles on Grooved Microfiber Arrays: Simulation, Programmable Shape-Shifting, and Catalytic Applications. ACS Applied Materials & Diterfaces, 2021, 13, 26561-26572.	8.0	5
54	Oxide Nanofibers as Catalysts Toward Energy Conversion and Environmental Protection. Chemical Research in Chinese Universities, 2021, 37, 366-378.	2.6	5

Yunqian Dai

#	Article	IF	CITATIONS
55	New host materials based on fluorene and benzimidazole units for efficient solution-processed green phosphorescent OLEDs. Optical Materials, 2013, 35, 2201-2207.	3.6	4
56	Mechanical Failure Mechanism of Silicon-Based Composite Anodes under Overdischarging Conditions Based on Finite Element Analysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34157-34167.	8.0	4
57	Applying low-temperature titration for determination of metallic sites on active oxide supported catalysts. Catalysis Science and Technology, 2019, 9, 2008-2018.	4.1	3
58	Self-assembly of defect-rich graphene oxide nanosheets with Na ₂ Ti ₃ O ₇ nanowires and their superior absorptive capacity to toxic dyes. Nanotechnology, 2017, 28, 245601.	2.6	2
59	Ergäung: A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2Nanofibers and Covered by Porous Silica. Angewandte Chemie, 2012, 124, 10848-10848.	2.0	1
60	Surfactantâ€Free and Microporous AlOOH/Al ₂ O ₃ Nanosheets on TiO ₂ â€Based Nanofibers: A Sustainedâ€Release Dominated Topotactic Transformation. ChemNanoMat, 2022, 8, .	2.8	1
61	Special techniques and advanced structures. , 2022, , 31-63.		0