Stefano Cicchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747936/publications.pdf

Version: 2024-02-01

145 papers 4,819 citations

34 h-index 106344 65 g-index

178 all docs

 $\begin{array}{c} 178 \\ \text{docs citations} \end{array}$

178 times ranked

4123 citing authors

#	Article	IF	CITATIONS
1	Ball milled glyco-graphene oxide conjugates markedly disrupted <i>Pseudomonas aeruginosa</i> biofilms. Nanoscale, 2022, 14, 10190-10199.	5.6	5
2	Combining cross-coupling reaction and Knoevenagel condensation in the synthesis of glyco-BODIPY probes for DC-SIGN super-resolution bioimaging. Bioorganic Chemistry, 2021, 109, 104730.	4.1	10
3	Metal-Free Antibacterial Additives Based on Graphene Materials and Salicylic Acid: From the Bench to Fabric Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26288-26298.	8.0	12
4	Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules, 2021, 26, 6306.	3.8	11
5	Glyco-Coated CdSe/ZnS Quantum Dots as Nanoprobes for Carbonic Anhydrase IX Imaging in Cancer Cells. ACS Applied Nano Materials, 2021, 4, 14153-14160.	5.0	11
6	On the Virtue of Indium in Reduction Reactions. A Comparison of Reductions Mediated by Indium and Zinc: Is Indium Metal an Effective Catalyst for Zinc Induced Reductions?. European Journal of Inorganic Chemistry, 2020, 2020, 1106-1113.	2.0	7
7	Heterogeneous Organo- and Metal Catalysis Using Phosphine Oxide Derivatives Anchored on Multiwalled Carbon Nanotubes. Journal of Carbon Research, 2020, 6, 57.	2.7	1
8	The B & Deproach: Ball-milling conjugation of dextran with phenylboronic acid (PBA)-functionalized BODIPY. Beilstein Journal of Organic Chemistry, 2020, 16, 2272-2281.	2.2	5
9	Bicyclic 5,6-membered With One Heteroatom N., 2020, , 437-437.		1
10	Multiwalled carbon nanotubes for combination therapy: a biodistribution and efficacy pilot study. Journal of Materials Chemistry B, 2019, 7, 2678-2687.	5.8	20
11	Benzoimidazoleâ€Pyridylamido Zirconium and Hafnium Alkyl Complexes as Homogeneous Catalysts for Tandem Carbon Dioxide Hydrosilylation to Methane. ChemCatChem, 2019, 11, 495-510.	3.7	27
12	Combined therapies with nanostructured carbon materials: there is room still available at the bottom. Journal of Materials Chemistry B, 2018, 6, 2022-2035.	5.8	16
13	Surface Engineering of Chemically Exfoliated MoS ₂ in a "Click― How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. Chemistry of Materials, 2018, 30, 8257-8269.	6.7	29
14	Metformin salts with oxidized multiwalled carbon nanotubes: In vitro biological activity and inhibition of CNT internalization. Journal of Drug Delivery Science and Technology, 2018, 47, 254-258.	3.0	7
15	Multiwalled carbon nanotubes for drug delivery: Efficiency related to length and incubation time. International Journal of Pharmaceutics, 2017, 521, 69-72.	5. 2	27
16	Pyridine-decorated carbon nanotubes as a metal-free heterogeneous catalyst for mild CO2 reduction to methanol with hydroboranes. Catalysis Science and Technology, 2017, 7, 5833-5837.	4.1	15
17	Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosensors and Bioelectronics, 2017, 93, 289-292.	10.1	63
18	Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application. Beilstein Journal of Nanotechnology, 2017, 8, 485-493.	2.8	10

#	Article	IF	Citations
19	Efficient Photoinduced Charge Separation in a BODIPY–C ₆₀ Dyad. Journal of Physical Chemistry C, 2016, 120, 16526-16536.	3.1	25
20	The "click-on-tube―approach for the production of efficient drug carriers based on oxidized multi-walled carbon nanotubes. Journal of Materials Chemistry B, 2016, 4, 3823-3831.	5.8	19
21	Azidoâ€Substituted BODIPY Dyes for the Production of Fluorescent Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 15349-15353.	3.3	17
22	Separation of Enantiomers of a Phospholipid in Langmuir Monolayers by a New Selector. Chirality, 2015, 27, 784-787.	2.6	4
23	Stable Ruthenium colloids by laser ablation. , 2015, , .		2
24	A Heteroâ€Bifunctional Spacer for the Smart Engineering of Carbonâ€Based Nanostructures. ChemPlusChem, 2015, 80, 704-714.	2.8	10
25	A Hetero-Bifunctional Spacer for the Smart Engineering of Carbon-Based Nanostructures. ChemPlusChem, 2015, 80, 636-636.	2.8	0
26	Urea vs. carbamate groups: a comparative study in a chiral C ₂ symmetric organogelator. Soft Matter, 2015, 11, 8333-8341.	2.7	10
27	Preparation of small size palladium nanoparticles by picosecond laser ablation and control of metal concentration in the colloid. Journal of Colloid and Interface Science, 2015, 442, 89-96.	9.4	18
28	Combined Experimental and Theoretical Study of Efficient and Ultrafast Energy Transfer in a Molecular Dyad. Journal of Physical Chemistry C, 2014, 118, 23476-23486.	3.1	29
29	Reactivity of [60]Fullerene with Primary Nitro Compounds: Addition or Catalysed Condensation to Isoxazolo[60]fullerenes. European Journal of Organic Chemistry, 2014, 2014, 7906-7915.	2.4	12
30	Metal-clad optical waveguide fluorescence device for the detection of heavy metal ions. Optical Engineering, 2014, 53, 071816.	1.0	8
31	Heterocyclic Chemistry. Progress in Heterocyclic Chemistry, 2014, 26, 29-54.	0.5	2
32	Ultrafast resonance energy transfer in the umbelliferone–alizarin bichromophore. Physical Chemistry Chemical Physics, 2014, 16, 10059-10074.	2.8	12
33	Carbon nanotubes/laser ablation gold nanoparticles composites. Thin Solid Films, 2014, 569, 93-99.	1.8	22
34	Progress in the Synthesis and Transformations of Alkylidenecyclopropanes and Alkylidenecyclobutanes. Chemical Reviews, 2014, 114, 7317-7420.	47.7	236
35	Chiral/ring closed vs. achiral/open chain triazine-based organogelators: induction and amplification of supramolecular chirality in organic gels. Soft Matter, 2014, 10, 3762.	2.7	6
36	Radicalâ€Functionalised Gel: A Buildingâ€Block Strategy for Magnetochiral Assembly. ChemPlusChem, 2013, 78, 149-156.	2.8	6

#	Article	IF	Citations
37	Low-generation dendrimers with a calixarene core and based on a chiral C 2-symmetric pyrrolidine as iminosugar mimics. Beilstein Journal of Organic Chemistry, 2012, 8, 951-957.	2.2	26
38	Synthesis of Octahydroquinolizinones Aza-Analogues of Terpenoid Skeletons. Heterocycles, 2012, 84, 1251.	0.7	7
39	Five-Membered Ring Systems with O and N Atoms. Progress in Heterocyclic Chemistry, 2012, , 317-342.	0.5	4
40	"Click―on Tubes: a Versatile Approach towards Multimodal Functionalization of SWCNTs. Chemistry - A European Journal, 2012, 18, 8454-8463.	3.3	32
41	A multichromophoric dendrimer: from synthesis to energy up-conversion in a rigid matrix. Chemical Communications, 2011, 47, 12780.	4.1	50
42	A Modular â€~Click' Approach to Substituted 2,2′-Bipyridines. Synlett, 2011, 2011, 223-226.	1.8	4
43	Five-Membered Ring Systems with O and N Atoms. Progress in Heterocyclic Chemistry, 2011, 23, 303-327.	0.5	5
44	Soft matter nanocomposites by grafting a versatile organogelator to carbon nanostructures. Soft Matter, 2011, 7, 10660.	2.7	11
45	Five-Membered Ring Systems with O & N Atoms. Progress in Heterocyclic Chemistry, 2011, , 321-347.	0.5	2
46	Rh-Catalyzed rearrangement of vinylcyclopropane to 1,3-diene units attached to N-heterocycles. Beilstein Journal of Organic Chemistry, 2011, 7, 298-303.	2.2	10
47	Functionalization of Multiwalled Carbon Nanotubes with Cyclic Nitrones for Materials and Composites: Addressing the Role of CNT Sidewall Defects. Chemistry of Materials, 2011, 23, 1923-1938.	6.7	51
48	Surface-enhanced fluorescence and surface-enhanced Raman scattering of push–pull molecules: sulfur-functionalized 4-amino-7-nitrobenzofurazan adsorbed on Ag and Au nanostructured substrates. Analytical and Bioanalytical Chemistry, 2011, 400, 361-367.	3.7	15
49	Cu2+ chemosensing behaviour of self-organized micro-array structures of a donor–acceptor bichromophoric compound anchored onto Ag nanoisland films. Sensors and Actuators B: Chemical, 2011, 155, 46-52.	7.8	2
50	Chirality driven selfâ€assembly in a fluorescent organogel. Chirality, 2011, 23, 833-840.	2.6	13
51	Photophysical characterization of low-molecular weight organogels for energy transfer and light harvesting. Journal of Molecular Structure, 2011, 993, 459-463.	3.6	15
52	Studies on the Lithiation of Hydroxypyrrolidines: Synthesis of PolyhydroxyÂłated Pyrrolidines via Chiral Enecarbamates. Synlett, 2011, 2011, 235-240.	1.8	6
53	Multiâ€Colour Electroluminescence of Dendronic Antennae Containing Pyrenes as Light Harvesters. ChemPhysChem, 2010, 11, 683-688.	2.1	7
54	Switching the Reaction Mode of 4-Methoxycarbonyl-4-chloro-5-spirocyclopropaneisoxazolidines by N-Aryl Substitution. Synlett, 2010, 2010, 1939-1942.	1.8	0

#	Article	IF	Citations
55	Metal nanoisland films for the enhancement of the chemico-physical properties of molecular adsorbates. , $2010, , .$		O
56	Can nitrones functionalize carbon nanotubes?. Chemical Communications, 2010, 46, 252-254.	4.1	28
57	Self-sorting chiral organogels from a long chain carbamate of 1-benzyl-pyrrolidine-3,4-diol. Soft Matter, 2010, 6, 1655.	2.7	40
58	Pyreneâ€Excimersâ€Based Antenna Systems. Chemistry - A European Journal, 2009, 15, 754-764.	3.3	43
59	Stereocontrolled Cyclic Nitrone Cycloaddition Strategy for the Synthesis of Pyrrolizidine and Indolizidine Alkaloids. Chemistry - A European Journal, 2009, 15, 7808-7821.	3.3	229
60	An Efficient (2â€Aminoarenethiolato)copper(I) Complex for the Copperâ€Catalysed Huisgen Reaction (CuAAC). European Journal of Organic Chemistry, 2009, 2009, 5423-5430.	2.4	44
61	Surface-enhanced fluorescence and surface-enhanced Raman scattering of ultrathin layers of bichromophoric antenna systems adsorbed on silver nanoisland films. Journal of Luminescence, 2009, 129, 1955-1959.	3.1	3
62	Chapter 5.7: Five-membered ring systems with O & N atoms. Progress in Heterocyclic Chemistry, 2009, 20, 265-288.	0.5	2
63	Chapter 5.7: Five-Membered Ring Systems with O & Atoms. Progress in Heterocyclic Chemistry, 2009, 21, 308-329.	0.5	2
64	Förster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films. Physical Chemistry Chemical Physics, 2009, 11, 9798.	2.8	25
65	Towards a general organogelator: combining a versatile scaffold and an efficient linking process. Soft Matter, 2009, 5, 1863.	2.7	25
66	N-Glycosylhydroxylamines as Masked Polyhydroxylated Chiral Nitrones in Cycloaddition Reactions: An Access to Pyrrolizidines. Heterocycles, 2009, 79, 883.	0.7	6
67	3â€5pirocyclopropanedihydro―and â€ŧetrahydropyridinâ€4â€ones from Nitrone Cycloadducts of Bicyclopropylidene via 1â€(1′â€Aminomethylcyclopropyl)cyclopropanol under Pd ^{II} Catalysis. European Journal of Organic Chemistry, 2008, 2008, 1085-1091.	2.4	25
68	The triazine ring as a scaffold for the synthesis of new organogelators. Tetrahedron Letters, 2008, 49, 1701-1705.	1.4	13
69	Chapter 5.7 Five-membered ring systems with O & Damp; N atoms. Progress in Heterocyclic Chemistry, 2008, , 288-313.	0.5	2
70	Novel Syntheses of Azetidines and Azetidinones. Chemical Reviews, 2008, 108, 3988-4035.	47.7	452
71	Formal Mixed Double Addition to N-Glycosylnitrones through Addition-Oxidation-Addition to N-Glycosylhydroxylamines. Synlett, 2008, 2008, 197-202.	1.8	2
72	Enantiopure Cyclic Nitrones: A Useful Class of Building Blocks for Asymmetric Syntheses. Synthesis, 2007, 2007, 485-504.	2.3	23

#	Article	IF	CITATIONS
73	Five-membered ring systems with O & Samp; N atoms. Progress in Heterocyclic Chemistry, 2007, , 288-309.	0.5	5
74	A new organogelator based on an enantiopure C2 symmetric pyrrolidine. Chemical Communications, 2007, , 1424.	4.1	22
75	Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM) of hydroxylamines from carbohydrate-derived nitrones. Beilstein Journal of Organic Chemistry, 2007, 3, 44.	2.2	11
76	The ultrafast energy transfer process in naphtole–nitrobenzofurazan bichromophoric molecular systems. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 209-221.	3.9	24
77	(3S,4S)-1-Benzyl-4-(N-octylcarbamoyloxy)pyrrolidin-3-ylN-octylcarbamate: a low-temperature redetermination. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3082-o3082.	0.2	4
78	Synthesis of Enantiopure Indolizinones by Cascade Ring Enlargements of 4â€-Chlorospiro[cyclopropane-1,5â€-isoxazolidines]. Journal of Organic Chemistry, 2006, 71, 2417-2423.	3.2	12
79	One-Pot Synthesis of Cyclic Nitrones and Their Conversion to Pyrrolizidines: 7a-epi-Crotanecine Inhibits α-Mannosidases. Journal of Organic Chemistry, 2006, 71, 1614-1619.	3.2	67
80	Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Letters, 2005, 46, 1287-1290.	1.4	43
81	Samarium(II) Iodide Reduction of Isoxazolidines ChemInform, 2005, 36, no.	0.0	0
82	Two-Step Metal-Mediated Transformation of Isoxazolidine-5-spirocyclopropanes into Pyridone Derivatives ChemInform, 2005, 36, no.	0.0	0
83	Chapter 5.7 Five-Membered ring systems with O & N Atoms. Progress in Heterocyclic Chemistry, 2005, 16, 283-308.	0.5	2
84	Two-Step Metal-Mediated Transformation of Isoxazolidine-5-spirocyclopropanes into Pyridone Derivativesâ€. Journal of Organic Chemistry, 2005, 70, 5636-5642.	3.2	31
85	Double Addition of Grignard Reagents toN-Glycosyl Nitrones:  A New Tool for the Construction of Enantiopure Azaheterocycles. Organic Letters, 2005, 7, 319-322.	4.6	33
86	Fully Stereoselective Nucleophilic Addition to a Novel Chiral PyrrolineN-Oxide: Total Syntheses of (2S,3R)-3-Hydroxy-3-methylproline and Its (2R)-Epimer. European Journal of Organic Chemistry, 2004, 2004, 776-782.	2.4	42
87	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones: Highly Stereoselective Syntheses of α,α′- and α,α-Substituted Hydroxypyrrolidines ChemInform, 2004, 35, no.	0.0	0
88	Five-Membered Ring Systems with O and N Atoms. ChemInform, 2004, 35, no.	0.0	0
89	Samarium(II) iodide reduction of isoxazolidines. Tetrahedron Letters, 2004, 45, 8375-8377.	1.4	57
90	A new 3,4-dihydroxypyrrolidine-based material for molecular recognition. Arkivoc, 2004, 2003, 98-106.	0.5	1

#	Article	IF	CITATIONS
91	Preparation of N-Glycosylhydroxylamines and Their Oxidation to Nitrones for the Enantioselective Synthesis of Isoxazolidines. European Journal of Organic Chemistry, 2003, 2003, 4152-4161.	2.4	36
92	Synthesis of New Enantiopure Bicyclic 1,2-Oxazines by Addition of Lithiated Methoxyallene to Chiral Cyclic Nitrones. European Journal of Organic Chemistry, 2003, 2003, 1153-1156.	2.4	53
93	Five-Membered Ring Systems with O and N Atoms. ChemInform, 2003, 34, no.	0.0	0
94	A Comparative Study of the Stereoselective Addition of Trimethylsilyl Cyanide and Diethylaluminum Cyanide to Chiral Cyclic Nitrones ChemInform, 2003, 34, no.	0.0	0
95	Heterocycles from Alkylidenecyclopropanes. ChemInform, 2003, 34, no.	0.0	0
96	Five-Membered Ring Systems with O and N Atoms. ChemInform, 2003, 34, no.	0.0	0
97	Indium-Mediated Reduction of Hydroxylamines to Amines ChemInform, 2003, 34, no.	0.0	0
98	Stereoselective synthesis of new bicyclic N,O-iso-homonucleoside analogues. Tetrahedron, 2003, 59, 5231-5240.	1.9	28
99	A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron: Asymmetry, 2003, 14, 367-379.	1.8	45
100	Indium-Mediated Reduction of Hydroxylamines to Amines. Organic Letters, 2003, 5, 1773-1776.	4.6	76
101	Heterocycles from Alkylidenecyclopropanes. Chemical Reviews, 2003, 103, 1213-1270.	47.7	451
102	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones:  Highly Stereoselective Syntheses of α,αâ€~- and α,α-Substituted Hydroxypyrrolidines. Organic Letters, 2003, 5, 4235-4238.	4.6	77
103	Chapter 5.7 Five-membered ring systems: With O& N atoms. Progress in Heterocyclic Chemistry, 2003, 15, 261-283.	0.5	31
104	Domino Palladium(II)-Mediated Rearrangement-Oxidative Cyclization of \hat{l}^2 -Aminocyclopropanols. Synlett, 2003, 2003, 2305-2308.	1.8	2
105	Chapter 5.7 Five-membered ring systems: With O & N atoms. Progress in Heterocyclic Chemistry, 2002, , 235-256.	0.5	6
106	Straightforward Synthesis of Enantiomerically Pure (3S,4R)- and (3R,4S)-3,4-Isopropylidenedioxypyrroline 1-Oxide, Precursors of Functionalizedcis-Dihydroxy Azaheterocycles, by a Novel "One-Pot―Procedure. Journal of Organic Chemistry, 2002, 67, 1678-1681.	3.2	29
107	Practical synthesis of N-alkyl-N-glycosylhydroxylamines, multitalented precursors of enantiomerically pure nitrones. Tetrahedron Letters, 2002, 43, 2741-2743.	1.4	21
108	Chemo-, regio- and stereoselective Mitsunobu reaction of unprotected pyrimidine bases with hydroxypyrrolidines. Tetrahedron Letters, 2002, 43, 4013-4015.	1.4	12

#	Article	IF	CITATIONS
109	A new nitrone from C2 symmetric piperidine for the synthesis of hydroxylated indolizidinone. Tetrahedron Letters, 2002, 43, 9357-9359.	1.4	31
110	Five-Membered Ring Systems: With O & Atoms. Progress in Heterocyclic Chemistry, 2001, , 217-237.	0.5	7
111	Manganese dioxide oxidation of hydroxylamines to nitrones. Tetrahedron Letters, 2001, 42, 6503-6505.	1.4	112
112	Cyclobutylidenecyclopropane: New Synthesis and Use in 1,3-Dipolar Cycloadditions â ⁻ A Direct Route to Spirocyclopropane-Annulated Azepinone Derivatives. European Journal of Organic Chemistry, 2001, 2001, 3789-3795.	2.4	14
113	Cyclopentene Anellation on Assorted Heterocyclic Skeletons by Vinylcyclopropane Rearrangement. Synlett, 2001, 2001, 0433-0435.	1.8	12
114	Straightforward Access to Enantiomerically Pure, Highly Functionalized Pyrrolizidines by Cycloaddition of Maleic Acid Esters to PyrrolineN-Oxides Derived from Tartaric, Malic and Aspartic Acids â^ Synthesis of (â^)-Hastanecine, 7-epi-Croalbinecine and (â^)-Croalbinecine. European Journal of Organic Chemistry, 2000, 2000, 3633-3645.	2.4	64
115	Synthesis of enantiopure protected 3-hydroxy-4-amino pyrroline N-oxides. Tetrahedron Letters, 2000, 41, 1583-1587.	1.4	18
116	A Straightforward Route to Enantiopure Pyrrolizidines and Indolizidines by Cycloaddition to Pyrroline N-Oxides Derived from the Chiral Pool. Molecules, 1999, 4, 1-12.	3.8	41
117	Oxidation of hydroxylamines to nitrones catalyzed by (salen)Mn(III) complexes. Enantioselective synthesis of a protected cis-dihydroxypyrroline N-oxide with jacobsen catalyst. Tetrahedron Letters, 1999, 40, 1989-1992.	1.4	41
118	Inexpensive and Environmentally Friendly Oxidation of Hydroxylamines to Nitrones with Bleach. Journal of Organic Chemistry, 1999, 64, 7243-7245.	3.2	74
119	Asymmetric and Doubly Asymmetric 1,3-Dipolar Cycloadditons in the Synthesis of Enantiopure Organophosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 389-392.	1.6	26
120	Enantiopure Pyrroline-N-Oxides for the Synthesis of Pyrrolizine and Indolizine Alkaloids. , $1999, , 213-220.$		7
121	Formal Desymmetrization by a "Mitsunobu Trick―Ⱂ Enantiomerically Purecis-3,4-DihydroxypyrrolineN-Oxides for the Enantiodivergent Synthesis of Trihydroxyindolizidines. European Journal of Organic Chemistry, 1998, 1998, 419-421.	2.4	20
122	Enantiomerically Pure Dendrimers Based on atrans-3,4-Dihydroxypyrrolidine. European Journal of Organic Chemistry, 1998, 1998, 2591-2597.	2.4	11
123	New enantiomerically pure oligomeric macrocycles based on a 3,4-dihydroxypyrrolidine nucleus. Journal of the Chemical Society Perkin Transactions 1, 1998, , 367-370.	0.9	2
124	Synthesis of Enantiopure 3-Substituted PyrrolineN-Oxides by Highly Regioselective Oxidation of the Parent Hydroxylamines:Â A Mechanistic Rationale. Journal of Organic Chemistry, 1997, 62, 3119-3125.	3.2	72
125	Synthesis of new enantiopure \hat{I}^3 -aminoalcohols: their use as catalysts in the alkylation of benzaldehyde by diethylzinc. Tetrahedron: Asymmetry, 1997, 8, 293-301.	1.8	56
126	Synthesis and Xâ€ray study of hexahydro―and tetrahydrophospholoâ€[2,3â€ <i>d</i>]isoxazoles, a new class of heterocycles of potential fungicidal activity. Journal of Heterocyclic Chemistry, 1996, 33, 1091-1098.	2.6	8

#	Article	IF	CITATIONS
127	Direct Chromatographic Resolution of P-Chiral Organophosphorus Compounds at Analytical and Preparative Levels. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 21-21.	1.6	0
128	The 2,2'-Coupled Pyrrolidine-Phospholane Ring System: A Highly Enantioselective Synthesis and Kinetic Resolution of the Phosphorus Centre. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 121-121.	1.6	0
129	Direct chromatographic resolution of P-chiral phosphinoylethenes on a chiral stationary phase containing N,N′-(3,5-dinitrobenzoyl)-trans-1,2-diaminocyclohexane as selector. Tetrahedron: Asymmetry, 1995, 6, 2017-2022.	1.8	11
130	Assignment of the Absolute Configuration of Natural Lentiginosine by Synthesis and Enzymic Assays of Optically Pure (+) and (-)-Enantiomers. Journal of Organic Chemistry, 1995, 60, 6806-6812.	3.2	196
131	A Five-Membered Enantiopure Cyclic Nitrone from Malic Acid by Regioselective Oxidation of Cyclic Hydroxylamine. Synthesis of (1S,7S,8aR)-Octahydro-1,7-dihydroxyindolizine. Journal of Organic Chemistry, 1995, 60, 4743-4748.	3.2	119
132	A new P-chiral aminophosphine ligand containing a 2,2′-coupled pyrrolidine–phospholane ring system. Synthesis and coordination properties with rhodium(I) and iridium(I) fragments. Journal of the Chemical Society Chemical Communications, 1995, , 833-834.	2.0	16
133	Synthesis of lentiginosine by stereoselective chiral nitrone cycloaddition and thermal rearrangement of strained spiroisoxazolidine. Tetrahedron Letters, 1994, 35, 949-952.	1.4	66
134	Kinetic Resolution in 1,3-Dipolar Cycloaddition of Tartaric Acid-Derived Nitrones to 2,3-Dihydro-1-phenyl-1H-phospholes. An Enantioselective Approach to the 2,2'-Coupled Pyrrolidine-Phospholane Ring System Journal of Organic Chemistry, 1994, 59, 1315-1318.	3.2	57
135	3-DIHYDRO-1-PHENYL-1 <i>h</i> h>-PHOSPHOLE 1-SULFIDES. X-RAY STRUCTURE OF (+)-(1 <i>S</i> ,3A <i>R</i> ,7 <i>S</i> >8-DI(<i>TERT</i> -BUTOXY)-1-PHENYLOCTAHYDRO-1 <i>H</i> -PYRROLO[1, 2- <i>B</i>)-1 <i>H</i> -PHOSPHOLO[2, 3- <i>D</i> -I-SOXAZOLE 1-SULFIDE. Phosphorus. Sulfur and Silicon and the Related Elements. 1994. 97.	1.6	3
136	New synthesis of five-membered cyclic nitrones from tartaric acid. Journal of Organic Chemistry, 1993, 58, 5274-5275.	3.2	107
137	Chiral Vinyl Phosphine Oxides: Double Asymmetric Induction in the 1,3-Dipolar Cycloaddition to Chiral Nitrones. Kinetic Resolution of a Racemic Phospholene Oxide. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 75, 155-158.	1.6	7
138	Radical addition to vinylphosphine oxides: 1,2-stereoinduction of phosphorus stercogcnic centre. Tetrahedron Letters, 1991, 32, 3265-3268.	1.4	27
139	Crystal structure and stereochemistry of (PS*, 2S*,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 267 Td (3aS*)-Chemistry, 1991, 2, 661-664.	nexahydro 0.7	o-2-(tert-but 7
140	Direct synthesis of isoxazolidinylphosphines by cycloaddition of nitrones to diphenylphosphinoethenes and x-ray structure of 7,7-dimethyl-1-oxo-1-phenyl-3-diphenylphosphinyl-hexahydro-1H-pyrrolo [1,2-c] [1,3,2] oxazaphosphorine. Tetrahedron, 1991, 47, 9083-9096.	1.9	11
141	Single and double asymmetric induction in the cycloaddition of chiral nitrones to achiral and chiral vinylphosphine oxides. Tetrahedron: Asymmetry, 1991, 2, 1063-1074.	1.8	35
142	Nitrone cycloadditions to 2,3-dihydro-1-phenyl-1H-phosphole 1-oxide. Double asymmetric induction and kinetic resolution by a chiral nitrone. Tetrahedron: Asymmetry, 1991, 2, 1371-1378.	1.8	31
143	Stereoselective nitrone additions to vinylphosphine derivatives: effect of phosphorus substituents on reaction diastereoselectivity. Journal of Organic Chemistry, 1991, 56, 4383-4388.	3.2	45
144	1,3-Aminoalcohols by reductive cleavage of isoxazolidines with molybdenum hexacarbonyl. Tetrahedron Letters, 1990, 31, 3351-3354.	1.4	209

STEFANO CICCHI

#	Article	IF	CITATIONS
145	The regioselectivity of nitrone cycloadditions to vinyl phosphorus compounds. Tetrahedron, 1990, 46, 7093-7104.	1.9	32