
Gerhard Klebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	¹⁹ F-NMR Unveils the Ligand-Induced Conformation of a Catalytically Inactive Twisted Homodimer of tRNA–Guanine Transglycosylase. ACS Chemical Biology, 2022, 17, 1745-1755.	3.4	1
2	Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase. ACS Chemical Biology, 2022, 17, 2229-2247.	3.4	7
3	Fragment Binding to Kinase Hinge: If Charge Distribution and Local p <i>K</i> _a Shifts Mislead Popular Bioisosterism Concepts. Angewandte Chemie - International Edition, 2021, 60, 252-258.	13.8	8
4	Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. ChemMedChem, 2021, 16, 292-300.	3.2	19
5	Fragmentâ€Bindung an die Kinaseâ€Scharnierâ€Region: Wenn Ladungsverteilung und lokale p K a â€Verschiebungen etablierte Bioisosterieâ€Konzepte fehlleiten. Angewandte Chemie, 2021, 133, 256-262.	2.0	0
6	Simultaneous determination of thermodynamic and kinetic data by isothermal titration calorimetry. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129772.	2.4	4
7	How a Fragment Draws Attention to Selectivity Discriminating Features between the Related Proteases Trypsin and Thrombin. Journal of Medicinal Chemistry, 2021, 64, 1611-1625.	6.4	2
8	The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Medicinal Chemistry Letters, 2021, 12, 426-432.	2.8	11
9	Facilitated crystal handling using a simple device for evaporation reduction in microtiter plates. Journal of Applied Crystallography, 2021, 54, 376-382.	4.5	2
10	Workflow and Tools for Crystallographic Fragment Screening at the Helmholtz-Zentrum Berlin. Journal of Visualized Experiments, 2021, , .	0.3	7
11	Mapping Water Thermodynamics on Drug Candidates <i>via</i> Molecular Building Blocks: a Strategy to Improve Ligand Design and Rationalize SAR. Journal of Medicinal Chemistry, 2021, 64, 4662-4676.	6.4	5
12	Targeting a Cryptic Pocket in a Protein–Protein Contact by Disulfide-Induced Rupture of a Homodimeric Interface. ACS Chemical Biology, 2021, 16, 1090-1098.	3.4	2
13	OFF-State-Specific Inhibition of the Proprotein Convertase Furin. ACS Chemical Biology, 2021, 16, 1692-1700.	3.4	10
14	Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1168-1182.	2.3	11
15	Unraveling a Ligandâ€Induced Twist of a Homodimeric Enzyme by Pulsed Electron–Electron Double Resonance. Angewandte Chemie - International Edition, 2021, 60, 23419-23426.	13.8	10
16	Entschlüsselung der ligandeninduzierten Verdrehung eines homodimeren Enzyms mit Hilfe der gepulsten Elektronâ€Elektronâ€Doppelresonanzâ€Spektroskopie. Angewandte Chemie, 2021, 133, 23607.	2.0	1
17	Which Properties Allow Ligands to Open and Bind to the Transient Binding Pocket of Human Aldose Reductase?. Biomolecules, 2021, 11, 1837.	4.0	5
18	Fragments as Novel Starting Points for tRNAâ€Guanine Transglycosylase Inhibitors Found by Alternative Screening Strategies. ChemMedChem, 2020, 15, 324-337.	3.2	7

#	Article	IF	CITATIONS
19	Advancing GIST-Based Solvent Functionals through Multiobjective Optimization of Solvent Enthalpy and Entropy Scoring Terms. Journal of Chemical Information and Modeling, 2020, 60, 6654-6665.	5.4	5
20	The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein–Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. ACS Chemical Biology, 2020, 15, 3021-3029.	3.4	3
21	Fragmentâ€Based Discovery of Nonâ€bisphosphonate Binders of <i>Trypanosoma brucei</i> Farnesyl Pyrophosphate Synthase. ChemBioChem, 2020, 21, 3096-3111.	2.6	8
22	Fragment Screening Hit Draws Attention to a Novel Transient Pocket Adjacent to the Recognition Site of the tRNA-Modifying Enzyme TGT. Journal of Medicinal Chemistry, 2020, 63, 6802-6820.	6.4	4
23	Structureâ€Based Design of FXIIIaâ€Blockers: Addressing a Transient Hydrophobic Pocket in the Active Site of FXIIIa. ChemMedChem, 2020, 15, 900-905.	3.2	3
24	Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach. ChemMedChem, 2020, 15, 680-684.	3.2	4
25	Role of Water Molecules in Protein–Ligand Dissociation and Selectivity Discrimination: Analysis of the Mechanisms and Kinetics of Biomolecular Solvation Using Molecular Dynamics. Journal of Chemical Information and Modeling, 2020, 60, 1818-1832.	5.4	11
26	Protein-Induced Change in Ligand Protonation during Trypsin and Thrombin Binding: Hint on Differences in Selectivity Determinants of Both Proteins?. Journal of Medicinal Chemistry, 2020, 63, 3274-3289.	6.4	8
27	Protein–Ligand Complex Solvation Thermodynamics: Development, Parameterization, and Testing of GIST-Based Solvent Functionals. Journal of Chemical Information and Modeling, 2020, 60, 1409-1423.	5.4	17
28	Conformational Changes in Alkyl Chains Determine the Thermodynamic and Kinetic Binding Profiles of Carbonic Anhydrase Inhibitors. ACS Chemical Biology, 2020, 15, 675-685.	3.4	16
29	The Influence of Varying Fluorination Patterns on the Thermodynamics and Kinetics of Benzenesulfonamide Binding to Human Carbonic Anhydrase II. Biomolecules, 2020, 10, 509.	4.0	7
30	A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Biomolecules, 2020, 10, 518.	4.0	5
31	F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening. Structure, 2020, 28, 694-706.e5.	3.3	27
32	Der Flaschenhals – von der Forschung zur Entwicklung. , 2020, , 73-115.		2
33	Surprising Non-Additivity of Methyl Groups in Drug–Kinase Interaction. ACS Chemical Biology, 2019, 14, 2585-2594.	3.4	14
34	Strategies for Late-Stage Optimization: Profiling Thermodynamics by Preorganization and Salt Bridge Shielding. Journal of Medicinal Chemistry, 2019, 62, 9753-9771.	6.4	15
35	Broad-scale analysis of thermodynamic signatures in medicinal chemistry: are enthalpy-favored binders the better development option?. Drug Discovery Today, 2019, 24, 943-948.	6.4	21
36	Diamondoid Amino Acidâ€Based Peptide Kinase A Inhibitor Analogues. ChemMedChem, 2019, 14, 663-672.	3.2	7

Gerhard Klebe

#	Article	IF	CITATIONS
37	Conceptional Design of Self-Assembling Bisubstrate-like Inhibitors of Protein Kinase A Resulting in a Boronic Acid Glutamate Linkage. ACS Omega, 2019, 4, 775-784.	3.5	10
38	Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature Communications, 2018, 9, 3559.	12.8	140
39	Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin. ChemMedChem, 2018, 13, 2266-2270.	3.2	7
40	Sugar Acetonides are a Superior Motif for Addressing the Large, Solventâ€Exposed Riboseâ€33 Pocket of tRNAâ€Guanine Transglycosylase. Chemistry - A European Journal, 2018, 24, 9957-9967.	3.3	7
41	Austausch der Proteinkontaktflähen in der homodimeren tRNAâ€Guaninâ€Transglycosylase: ein Weg der funktionellen Regulation. Angewandte Chemie, 2018, 130, 10242-10247.	2.0	2
42	On the Implication of Water on Fragmentâ€ŧo‣igand Growth in Kinase Binding Thermodynamics. ChemMedChem, 2018, 13, 1988-1996.	3.2	8
43	Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase. Biochemistry, 2018, 57, 3953-3965.	2.5	8
44	Paradoxically, Most Flexible Ligand Binds Most Entropy-Favored: Intriguing Impact of Ligand Flexibility and Solvation on Drug–Kinase Binding. Journal of Medicinal Chemistry, 2018, 61, 5922-5933.	6.4	36
45	Swapping Interface Contacts in the Homodimeric tRNAâ€Guanine Transglycosylase: An Option for Functional Regulation. Angewandte Chemie - International Edition, 2018, 57, 10085-10090.	13.8	10
46	A Falseâ€Positive Screening Hit in Fragmentâ€Based Lead Discovery: Watch out for the Red Herring. Angewandte Chemie - International Edition, 2017, 56, 1908-1913.	13.8	12
47	Ladungen verschieben Protonierungen: Neutronenbeugung zeigt, dass Anilin und 2â€Aminopyridin protoniert an Trypsin binden. Angewandte Chemie, 2017, 129, 4965-4969.	2.0	4
48	Falschâ€positiver Treffer im Fragmentâ€basierten Wirkstoffdesign: Lass Dich nicht auf die falsche Färte locken!. Angewandte Chemie, 2017, 129, 1934-1940.	2.0	0
49	Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin. ACS Chemical Biology, 2017, 12, 225-233.	3.4	14
50	Paying the Price of Desolvation in Solvent-Exposed Protein Pockets: Impact of Distal Solubilizing Groups on Affinity and Binding Thermodynamics in a Series of Thermolysin Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 5791-5799.	6.4	35
51	An Allyl Protection and Improved Purification Strategy Enables the Synthesis of Functionalized Phosphonamidate Peptides. Synthesis, 2017, 49, 1857-1866.	2.3	4
52	Charges Shift Protonation: Neutron Diffraction Reveals that Aniline and 2â€Aminopyridine Become Protonated Upon Binding to Trypsin. Angewandte Chemie - International Edition, 2017, 56, 4887-4890.	13.8	18
53	Price for Opening the Transient Specificity Pocket in Human Aldose Reductase upon Ligand Binding: Structural, Thermodynamic, Kinetic, and Computational Analysis. ACS Chemical Biology, 2017, 12, 1397-1415.	3.4	23
54	Protoplast Swelling and Hypocotyl Growth Depend on Different Auxin Signaling Pathways. Plant Physiology, 2017, 175, 982-994.	4.8	19

#	Article	IF	CITATIONS
55	How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S ₁ ′ Pocket of Thermolysin. Journal of the American Chemical Society, 2017, 139, 10419-10431.	13.7	23
56	Soaking suggests "alternative factsâ€: Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition. PLoS ONE, 2017, 12, e0175723.	2.5	30
57	Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study. ACS Chemical Biology, 2016, 11, 1693-1701.	3.4	87
58	Structures of endothiapepsin–fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 346-355.	0.8	29
59	Changing the selectivity profile – from substrate analog inhibitors of thrombin and factor Xa to potent matriptase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 89-97.	5.2	6
60	Active Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad. Journal of Medicinal Chemistry, 2016, 59, 9743-9759.	6.4	12
61	Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin. Journal of Medicinal Chemistry, 2016, 59, 7561-7575.	6.4	14
62	Occupying a flat subpocket in a tRNA-modifying enzyme with ordered or disordered side chains: Favorable or unfavorable for binding?. Bioorganic and Medicinal Chemistry, 2016, 24, 4900-4910.	3.0	11
63	Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragmentâ€Based Drug Design Facilitated by Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2016, 55, 9422-9426.	13.8	55
64	High-Throughput Crystallography: Reliable and Efficient Identification of Fragment Hits. Structure, 2016, 24, 1398-1409.	3.3	62
65	Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands. Journal of Medicinal Chemistry, 2016, 59, 10530-10548.	6.4	64
66	Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and Highâ€Resolution Crystal Structures. ChemMedChem, 2016, 11, 309-319.	3.2	17
67	An Immucillinâ€Based Transitionâ€Stateâ€Analogous Inhibitor of tRNA–Guanine Transglycosylase (TGT). Chemistry - A European Journal, 2016, 22, 6750-6754.	3.3	4
68	Impact of Surface Water Layers on Protein–Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case?. Journal of Chemical Information and Modeling, 2016, 56, 223-233.	5.4	29
69	Kinetic and Structural Insights into the Mechanism of Binding of Sulfonamides to Human Carbonic Anhydrase by Computational and Experimental Studies. Journal of Medicinal Chemistry, 2016, 59, 4245-4256.	6.4	60
70	Fragmentverknüpfung und â€optimierung von Hemmstoffen der Aspartylprotease Endothiapepsin: Fragmentbasiertes Wirkstoffdesign beschleunigt durch dynamische kombinatorische Chemie. Angewandte Chemie, 2016, 128, 9569-9574.	2.0	21
71	ChamÃ⊯onâ€artige Bindungsmodi in der Leitstrukturoptimierung: wechselnde Bindungsgeometrien bei Aspartylproteaseâ€Inhibitoren. Angewandte Chemie, 2015, 127, 2891-2896.	2.0	1
72	Structural Determinants of the Selectivity of 3â€Benzyluracilâ€1â€acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem, 2015, 10, 1989-2003.	3.2	13

#	Article	IF	CITATIONS
73	One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists. ChemMedChem, 2015, 10, 1511-1521.	3.2	54
74	Acceleration of Binding Site Comparisons by Graph Partitioning. Molecular Informatics, 2015, 34, 550-558.	2.5	2
75	Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. International Journal of Molecular Sciences, 2015, 16, 19184-19194.	4.1	13
76	Thermodynamic signatures of fragment binding: Validation of direct versus displacement ITC titrations. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 647-656.	2.4	36
77	The Use of Thermodynamic and Kinetic Data in Drug Discovery: Decisive Insight or Increasing the Puzzlement?. ChemMedChem, 2015, 10, 229-231.	3.2	36
78	Replacement of Water Molecules in a Phosphate Binding Site by Furanosideâ€Appended <i>lin</i> â€Benzoguanine Ligands of tRNAâ€Guanine Transglycosylase (TGT). Chemistry - A European Journal, 2015, 21, 126-135.	3.3	8
79	Frontispiece: Replacement of Water Molecules in a Phosphate Binding Site by Furanoside-Appendedlin-Benzoguanine Ligands of tRNA-Guanine Transglycosylase (TGT). Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
80	Tracing Binding Modes in Hitâ€toâ€Lead Optimization: Chameleonâ€Like Poses of Aspartic Protease Inhibitors. Angewandte Chemie - International Edition, 2015, 54, 2849-2853.	13.8	27
81	Applying thermodynamic profiling in lead finding and optimization. Nature Reviews Drug Discovery, 2015, 14, 95-110.	46.4	240
82	Identification of Novel Aldose Reductase Inhibitors Based on Carboxymethylated Mercaptotriazinoindole Scaffold. Journal of Medicinal Chemistry, 2015, 58, 2649-2657.	6.4	42
83	What Glues a Homodimer Together: Systematic Analysis of the Stabilizing Effect of an Aromatic Hot Spot in the Protein–Protein Interface of the tRNA-Modifying Enzyme Tgt. ACS Chemical Biology, 2015, 10, 1897-1907.	3.4	19
84	Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. Journal of Computer-Aided Molecular Design, 2015, 29, 867-883.	2.9	54
85	Fragment Binding Can Be Either More Enthalpy-Driven or Entropy-Driven: Crystal Structures and Residual Hydration Patterns Suggest Why. Journal of Medicinal Chemistry, 2015, 58, 6960-6971.	6.4	37
86	Large-Scale Mining for Similar Protein Binding Pockets: With RAPMAD Retrieval on the Fly Becomes Real. Journal of Chemical Information and Modeling, 2015, 55, 165-179.	5.4	18
87	Protein-Ligand Interactions as the Basis for Drug Action. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 83-92.	0.5	7
88	Structure-Based Drug Design to Perturb Function of a tRNA-Modifying Enzyme by Active Site and Protein-Protein Interface Inhibition. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 209-221.	0.5	0
89	Extended Graph-Based Models for Enhanced Similarity Search in Cavbase. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 878-890.	3.0	11
90	Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2713-2732.	2.6	17

#	Article	IF	CITATIONS
91	Impact of protein and ligand impurities on ITC-derived protein–ligand thermodynamics. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2843-2850.	2.4	21
92	Structureâ€Based Design of Inhibitors of the Aspartic Protease Endothiapepsin by Exploiting Dynamic Combinatorial Chemistry. Angewandte Chemie - International Edition, 2014, 53, 3259-3263.	13.8	71
93	Methyl, Ethyl, Propyl, Butyl: Futile But Not for Water, as the Correlation of Structure and Thermodynamic Signature Shows in a Congeneric Series of Thermolysin Inhibitors. ChemMedChem, 2014, 9, 833-846.	3.2	70
94	Beyond Affinity: Enthalpy–Entropy Factorization Unravels Complexity of a Flat Structure–Activity Relationship for Inhibition of a tRNA-Modifying Enzyme. Journal of Medicinal Chemistry, 2014, 57, 5566-5578.	6.4	15
95	Chasing Protons: How Isothermal Titration Calorimetry, Mutagenesis, and p <i>K</i> _a Calculations Trace the Locus of Charge in Ligand Binding to a tRNA-Binding Enzyme. Journal of Medicinal Chemistry, 2014, 57, 5554-5565.	6.4	26
96	Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 889-903.	2.5	28
97	Cavities Tell More than Sequences: Exploring Functional Relationships of Proteases via Binding Pockets. Journal of Chemical Information and Modeling, 2013, 53, 2082-2092.	5.4	18
98	Protein–Ligand Interactions as the Basis for Drug Action. , 2013, , 61-88.		9
99	Screening Technologies for Lead Structure Discovery. , 2013, , 129-152.		0
100	Optimization of Lead Structures. , 2013, , 153-172.		1
101	Three-Dimensional Structure of Biomolecules. , 2013, , 291-314.		0
102	Quantitative Structure–Activity Relationships. , 2013, , 371-396.		0
103	A Case Study: Structure-Based Inhibitor Design for tRNA-Guanine Transglycosylase. , 2013, , 449-468.		0
104	Launching Spiking Ligands into a Protein–Protein Interface: A Promising Strategy To Destabilize and Break Interface Formation in a tRNA Modifying Enzyme. ACS Chemical Biology, 2013, 8, 1163-1178.	3.4	24
105	Structure of Active Coagulation Factorâ€XIII Triggered by Calcium Binding: Basis for the Design of Next eneration Anticoagulants. Angewandte Chemie - International Edition, 2013, 52, 11930-11934.	13.8	62
106	Graphâ€based methods for protein structure comparison. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3, 307-320.	6.8	5
107	Das Nadelöhr – von der Forschung zur Entwicklung. , 2013, , 53-115.		1
108	Dissecting the Hydrophobic Effect on the Molecular Level: The Role of Water, Enthalpy, and Entropy in Ligand Binding to Thermolysin. Angewandte Chemie - International Edition, 2013, 52, 1822-1828.	13.8	134

#	Article	IF	CITATIONS
109	High-affinity inhibitors of <i>Zymomonas mobilis</i> tRNA–guanine transglycosylase through convergent optimization. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1798-1807.	2.5	10
110	Conformational Analysis. , 2013, , 335-346.		0
111	Investigation of Specificity Determinants in Bacterial tRNA-Guanine Transglycosylase Reveals Queuine, the Substrate of Its Eucaryotic Counterpart, as Inhibitor. PLoS ONE, 2013, 8, e64240.	2.5	16
112	Das Nadelöhr – von der Forschung zur Entwicklung. , 2013, , 53-115.		0
113	Ligand Binding Stepwise Disrupts Water Network in Thrombin: Enthalpic and Entropic Changes Reveal Classical Hydrophobic Effect. Journal of Medicinal Chemistry, 2012, 55, 6094-6110.	6.4	86
114	Concise and efficient syntheses of preQ1 base, Q base, and (ent)-Q base. Organic and Biomolecular Chemistry, 2012, 10, 8660.	2.8	12
115	Beyond Heparinization: Design of Highly Potent Thrombin Inhibitors Suitable for Surface Coupling. ChemMedChem, 2012, 7, 1965-1973.	3.2	9
116	GPU-based Cloud computing for comparing the structure of protein binding sites. , 2012, , .		7
117	Targeting the Blind Spot of Polycationic Nanocarrier-Based siRNA Delivery. ACS Nano, 2012, 6, 9447-9454.	14.6	83
118	Cofactorâ€binding sites in proteins of deviating sequence: Comparative analysis and clustering in torsion angle, cavity, and fold space. Proteins: Structure, Function and Bioinformatics, 2012, 80, 626-648.	2.6	19
119	Fingerprint Kernels for Protein Structure Comparison. Molecular Informatics, 2012, 31, 443-452.	2.5	5
120	From <i>lin</i> â€Benzoguanines to <i>lin</i> â€Benzohypoxanthines as Ligands for <i>Zymomonas mobilis</i> tRNA–Guanine Transglycosylase: Replacement of Protein–Ligand Hydrogen Bonding by Importing Water Clusters. Chemistry - A European Journal, 2012, 18, 9246-9257.	3.3	19
121	Experimental and Computational Active Site Mapping as a Starting Point to Fragmentâ€Based Lead Discovery. ChemMedChem, 2012, 7, 248-261.	3.2	31
122	Water Makes the Difference: Rearrangement of Water Solvation Layer Triggers Nonâ€additivity of Functional Group Contributions in Protein–Ligand Binding. ChemMedChem, 2012, 7, 1423-1434.	3.2	64
123	Superposition and Alignment of Labeled Point Clouds. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1653-1666.	3.0	14
124	SEGA: Semiglobal Graph Alignment for Structure-Based Protein Comparison. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1330-1343.	3.0	11
125	A Small Nonrule of 3 Compatible Fragment Library Provides High Hit Rate of Endothiapepsin Crystal Structures with Various Fragment Chemotypes. Journal of Medicinal Chemistry, 2011, 54, 7784-7796.	6.4	97
126	Ligand-induced fit affects binding modes and provokes changes in crystal packing of aldose reductase. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 879-887.	2.4	15

#	Article	IF	CITATIONS
127	Congeneric but Still Distinct: How Closely Related Trypsin Ligands Exhibit Different Thermodynamic and Structural Properties. Journal of Molecular Biology, 2011, 405, 1170-1187.	4.2	49
128	Tracing the Detail: How Mutations Affect Binding Modes and Thermodynamic Signatures of Closely Related Aldose Reductase Inhibitors. Journal of Molecular Biology, 2011, 406, 700-712.	4.2	23
129	Two Solutions for the Same Problem: Multiple Binding Modes of Pyrrolidine-Based HIV-1 Protease Inhibitors. Journal of Molecular Biology, 2011, 410, 745-755.	4.2	8
130	<i>DSX</i> : A Knowledge-Based Scoring Function for the Assessment of Protein–Ligand Complexes. Journal of Chemical Information and Modeling, 2011, 51, 2731-2745.	5.4	249
131	Radiation damage reveals promising interaction position. Journal of Synchrotron Radiation, 2011, 18, 782-789.	2.4	5
132	The Golden Age of GPCR Structural Biology: Any Impact on Drug Design?. Angewandte Chemie - International Edition, 2011, 50, 11573-11575.	13.8	16
133	Stereo―and Regioselective Azide/Alkyne Cycloadditions in Carbonic Anhydrase II via Tethering, Monitored by Crystallography and Mass Spectrometry. Chemistry - A European Journal, 2011, 17, 5842-5851.	3.3	16
134	fconv: format conversion, manipulation and feature computation of molecular data. Bioinformatics, 2011, 27, 1021-1022.	4.1	64
135	Pyrrolidine Derivatives as Plasmepsin Inhibitors: Binding Mode Analysis Assisted by Molecular Dynamics Simulations of a Highly Flexible Protein. ChemMedChem, 2010, 5, 443-454.	3.2	14
136	Fragmentâ€Based Lead Discovery: Screening and Optimizing Fragments for Thermolysin Inhibition. ChemMedChem, 2010, 5, 930-940.	3.2	22
137	Bidentate Zinc Chelators for α arbonic Anhydrases that Produce a Trigonal Bipyramidal Coordination Geometry. ChemMedChem, 2010, 5, 1609-1615.	3.2	27
138	Adding calorimetric data to decision making in lead discovery: a hot tip. Nature Reviews Drug Discovery, 2010, 9, 23-27.	46.4	354
139	Enhancement of Hydrophobic Interactions and Hydrogen Bond Strength by Cooperativity: Synthesis, Modeling, and Molecular Dynamics Simulations of a Congeneric Series of Thrombin Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2126-2135.	6.4	79
140	GARLig: A Fully Automated Tool for Subset Selection of Large Fragment Spaces via a Self-Adaptive Genetic Algorithm. Journal of Chemical Information and Modeling, 2010, 50, 1644-1659.	5.4	14
141	Non-additivity of Functional Group Contributions in Protein–Ligand Binding: A Comprehensive Study by Crystallography and Isothermal Titration Calorimetry. Journal of Molecular Biology, 2010, 397, 1042-1054.	4.2	137
142	Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules. Bioinformatics, 2009, 25, 2110-2117.	4.1	23
143	Highâ€Affinity Inhibitors of tRNAâ€Guanine Transglycosylase Replacing the Function of a Structural Water Cluster. Chemistry - A European Journal, 2009, 15, 10809-10817.	3.3	30
144	Crystal Structure Analysis and in Silico p <i>K</i> _a Calculations Suggest Strong p <i>K</i> _a Shifts of Ligands as Driving Force for Highâ€Affinity Binding to TGT. ChemBioChem, 2009, 10, 716-727.	2.6	23

#	Article	IF	CITATIONS
145	Structureâ€Based Optimization of Aldose Reductase Inhibitors Originating from Virtual Screening. ChemMedChem, 2009, 4, 809-819.	3.2	15
146	How to Replace the Residual Solvation Shell of Polar Active Site Residues to Achieve Nanomolar Inhibition of tRNAâ€Guanine Transglycosylase. ChemMedChem, 2009, 4, 2012-2023.	3.2	26
147	Prediction of turn types in protein structure by machineâ€learning classifiers. Proteins: Structure, Function and Bioinformatics, 2009, 74, 344-352.	2.6	23
148	Turns revisited: A uniform and comprehensive classification of normal, open, and reverse turn families minimizing unassigned random chain portions. Proteins: Structure, Function and Bioinformatics, 2009, 74, 353-367.	2.6	46
149	Merging chemical and biological space: Structural mapping of enzyme binding pocket space. Proteins: Structure, Function and Bioinformatics, 2009, 76, 317-330.	2.6	38
150	Secbase: Database Module To Retrieve Secondary Structure Elements with Ligand Binding Motifs. Journal of Chemical Information and Modeling, 2009, 49, 2388-2402.	5.4	14
151	More than a Simple Lipophilic Contact: A Detailed Thermodynamic Analysis of Nonbasic Residues in the S1 Pocket of Thrombin. Journal of Molecular Biology, 2009, 390, 56-69.	4.2	106
152	Think Twice: Understanding the High Potency of Bis(phenyl)methane Inhibitors of Thrombin. Journal of Molecular Biology, 2009, 391, 552-564.	4.2	48
153	An Integrative Approach Combining Noncovalent Mass Spectrometry, Enzyme Kinetics and X-ray Crystallography to Decipher Tgt Protein-Protein and Protein-RNA Interaction. Journal of Molecular Biology, 2009, 393, 833-847.	4.2	41
154	The Foundations of Protein–Ligand Interaction. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 79-101.	0.5	3
155	Molecular Docking Screens Using Comparative Models of Proteins. Journal of Chemical Information and Modeling, 2009, 49, 2512-2527.	5.4	132
156	Efficient Construction of Multiple Geometrical Alignments for the Comparison of Protein Binding Sites. , 2009, , .		1
157	Structure-Based Design of Trna-Guanine Transglycosylase Inhibitors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 103-120.	0.5	0
158	Large scale analysis of proteinâ€binding cavities using selfâ€organizing maps and waveletâ€based surface patches to describe functional properties, selectivity discrimination, and putative crossâ€reactivity. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1288-1306.	2.6	18
159	SFCscore: Scoring functions for affinity prediction of protein–ligand complexes. Proteins: Structure, Function and Bioinformatics, 2008, 73, 395-419.	2.6	103
160	Computerâ€Aided Design and Synthesis of Nonpeptidic Plasmepsin II and IV Inhibitors. ChemMedChem, 2008, 3, 1323-1336.	3.2	42
161	Targeting the Openâ€Flap Conformation of HIVâ€1 Protease with Pyrrolidineâ€Based Inhibitors. ChemMedChem, 2008, 3, 1337-1344.	3.2	32
162	Merging the Binding Sites of Aldose and Aldehyde Reductase for Detection of Inhibitor Selectivity-determining Features. Journal of Molecular Biology, 2008, 379, 991-1016.	4.2	48

#	Article	IF	CITATIONS
163	Structural and Kinetic Analysis of Pyrrolidine-Based Inhibitors of the Drug-Resistant Ile84Val Mutant of HIV-1 Protease. Journal of Molecular Biology, 2008, 383, 347-357.	4.2	18
164	Structure-Guided Design of <i>C</i> ₂ -Symmetric HIV-1 Protease Inhibitors Based on a Pyrrolidine Scaffold. Journal of Medicinal Chemistry, 2008, 51, 2078-2087.	6.4	43
165	Use of 3D QSAR Models for Database Screening:  A Feasibility Study. Journal of Chemical Information and Modeling, 2008, 48, 384-396.	5.4	29
166	Multiple Graph Alignment for the Structural Analysis of Protein Active Sites. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 310-320.	3.0	30
167	Structural and Thermodynamic Study on Aldose Reductase: Nitro-substituted Inhibitors with Strong Enthalpic Binding Contribution. Journal of Molecular Biology, 2007, 368, 618-638.	4.2	77
168	Protonation Changes upon Ligand Binding to Trypsin and Thrombin: Structural Interpretation Based on pKa Calculations and ITC Experiments. Journal of Molecular Biology, 2007, 367, 1347-1356.	4.2	75
169	Evidence for a Novel Binding Site Conformer of Aldose Reductase in Ligand-Bound Stateâ€. Journal of Molecular Biology, 2007, 369, 186-197.	4.2	33
170	Crystal Structures of tRNA-guanine Transglycosylase (TGT) in Complex with Novel and Potent Inhibitors Unravel Pronounced Induced-fit Adaptations and Suggest Dimer Formation Upon Substrate Binding. Journal of Molecular Biology, 2007, 370, 492-511.	4.2	57
171	Tracing Changes in Protonation: A Prerequisite to Factorize Thermodynamic Data of Inhibitor Binding to Aldose Reductase. Journal of Molecular Biology, 2007, 373, 1305-1320.	4.2	45
172	Glutamate versus Glutamine Exchange Swaps Substrate Selectivity in tRNA-Guanine Transglycosylase: Insight into the Regulation of Substrate Selectivity by Kinetic and Crystallographic Studies. Journal of Molecular Biology, 2007, 374, 764-776.	4.2	12
173	PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 2007, 35, W522-W525.	14.5	1,659
174	Graph Alignment: Fuzzy Pattern Mining for the Structural Analysis of Protein Active Sites. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	1
175	Atypical Protonation States in the Active Site of HIV-1 Protease: A Computational Study. Journal of Chemical Information and Modeling, 2007, 47, 1590-1598.	5.4	35
176	How Reliable Are Current Docking Approaches for Structure-Based Drug Design? Lessons from Aldose Reductase. Angewandte Chemie - International Edition, 2007, 46, 3575-3578.	13.8	53
177	Thermodynamic Inhibition Profile of a Cyclopentyl and a Cyclohexyl Derivative towards Thrombin: The Same but for Different Reasons. Angewandte Chemie - International Edition, 2007, 46, 8511-8514.	13.8	35
178	Saccharin Inhibits Carbonic Anhydrases: Possible Explanation for its Unpleasant Metallic Aftertaste. Angewandte Chemie - International Edition, 2007, 46, 7697-7699.	13.8	168
179	Potent Inhibitors of tRNAâ€Guanine Transglycosylase, an Enzyme Linked to the Pathogenicity of the <i>Shigella</i> Bacterium: Chargeâ€Assisted Hydrogen Bonding. Angewandte Chemie - International Edition, 2007, 46, 8266-8269.	13.8	47
180	KNOBLE: A Knowledgeâ€Based Approach for the Design and Synthesis of Readily Accessible Smallâ€Molecule Chemical Probes To Test Protein Binding. Angewandte Chemie - International Edition, 2007, 46, 9105-9109.	13.8	12

#	Article	IF	CITATIONS
181	Functional Classification of Protein Kinase Binding Sites Using Cavbase. ChemMedChem, 2007, 2, 1432-1447.	3.2	70
182	Strategies to search and design stabilizers of protein-protein interactions: A feasibility study. Proteins: Structure, Function and Bioinformatics, 2007, 68, 170-186.	2.6	38
183	Novel Leads for Selective Antibiotics Against Shigellosis by Virtual Screening, Crystallography and Synthesis. , 2007, , 209-249.		1
184	Virtual Ligand Screening: A Method to Discover New Drug Leads. , 2007, , 251-272.		0
185	3D QSAR Selectivity Analyses of Carbonic Anhydrase Inhibitors:  Insights for the Design of Isozyme Selective Inhibitors. Journal of Chemical Information and Modeling, 2006, 46, 2737-2760.	5.4	35
186	Crystal structure of Bacillus subtilis S-adenosylmethionine:tRNA ribosyltransferase-isomerase. Biochemical and Biophysical Research Communications, 2006, 351, 695-701.	2.1	16
187	High-resolution Crystal Structure of Aldose Reductase Complexed with the Novel Sulfonyl-pyridazinone Inhibitor Exhibiting an Alternative Active Site Anchoring Group. Journal of Molecular Biology, 2006, 356, 45-56.	4.2	44
188	From the Similarity Analysis of Protein Cavities to the Functional Classification of Protein Families Using Cavbase. Journal of Molecular Biology, 2006, 359, 1023-1044.	4.2	89
189	Expect the Unexpected or Caveat for Drug Designers: Multiple Structure Determinations Using Aldose Reductase Crystals Treated under Varying Soaking and Co-crystallisation Conditions. Journal of Molecular Biology, 2006, 363, 174-187.	4.2	101
190	Physicochemical descriptors to discriminate protein-protein interactions in permanent and transient complexes selected by means of machine learning algorithms. Proteins: Structure, Function and Bioinformatics, 2006, 65, 607-622.	2.6	48
191	Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes. Proteins: Structure, Function and Bioinformatics, 2006, 65, 424-437.	2.6	58
192	Virtual ligand screening: strategies, perspectives and limitations. Drug Discovery Today, 2006, 11, 580-594.	6.4	598
193	An Efficient Method for the Synthesis of Peptide Aldehyde Libraries Employed in the Discovery of Reversible SARS Coronavirus Main Protease (SARS oV M pro) Inhibitors. ChemBioChem, 2006, 7, 1048-1055.	2.6	50
194	A Simple Protocol To Estimate Differences in Protein Binding Affinity for Enantiomers without Prior Resolution of Racemates. Angewandte Chemie - International Edition, 2006, 45, 985-989.	13.8	46
195	Unexpected Novel Binding Mode of Pyrrolidine-Based Aspartyl Protease Inhibitors: Design, Synthesis and Crystal Structure in Complex with HIV Protease. ChemMedChem, 2006, 1, 106-117.	3.2	22
196	The Potential of P1 Site Alterations in Peptidomimetic Protease Inhibitors as Suggested by Virtual Screening and Explored by the Use of Ciʻ£¿C-Coupling Reagents. ChemMedChem, 2006, 1, 445-457.	3.2	33
197	Integrated Approach Using Protein and Ligand Information to Analyze Selectivity- and Affinity-Determining Features of Carbonic Anhydrase Isozymes. ChemMedChem, 2006, 1, 839-853.	3.2	18
198	Synthesis, Biological Evaluation, and Crystallographic Studies of Extended Guanine-Based (lin-Benzoguanine) Inhibitors for tRNA-Guanine Transglycosylase (TGT). Helvetica Chimica Acta, 2006, 89, 573-597.	1.6	31

#	Article	IF	CITATIONS
199	AffinDB: a freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Research, 2006, 34, D522-D526.	14.5	91
200	Virtual Screening. Drug Discovery Series, 2005, , 3-24.	0.1	7
201	An Old Target Revisited: Two New Privileged Skeletons and an Unexpected Binding Mode For HIV-Protease Inhibitors. Angewandte Chemie - International Edition, 2005, 44, 3140-3144.	13.8	36
202	Metal Ions as Cofactors for the Binding of Inhibitors to Methionine Aminopeptidase: A Critical View of the Relevance of In Vitro Metalloenzyme Assays. Angewandte Chemie - International Edition, 2005, 44, 3620-3623.	13.8	55
203	Mechanism and Substrate Specificity of tRNA-Guanine Transglycosylases (TGTs): tRNA-Modifying Enzymes from the Three Different Kingdoms of Life Share a Common Catalytic Mechanism. ChemBioChem, 2005, 6, 1926-1939.	2.6	68
204	Cooperative effects in hydrogen-bonding of protein secondary structure elements: A systematic analysis of crystal data using Secbase. Proteins: Structure, Function and Bioinformatics, 2005, 61, 310-317.	2.6	45
205	Benzophenone-Based Farnesyltransferase Inhibitors with High Activity against Trypanosoma cruzi. Journal of Medicinal Chemistry, 2005, 48, 7186-7191.	6.4	37
206	Factorizing Selectivity Determinants of Inhibitor Binding toward Aldose and Aldehyde Reductases:Â Structural and Thermodynamic Properties of the Aldose Reductase Mutant Leu300Proâ^Fidarestat Complex. Journal of Medicinal Chemistry, 2005, 48, 5659-5665.	6.4	54
207	AFMoC Enhances Predictivity of 3D QSAR:Â A Case Study with DOXP-reductoisomerase. Journal of Medicinal Chemistry, 2005, 48, 3547-3563.	6.4	59
208	DrugScoreCSDKnowledge-Based Scoring Function Derived from Small Molecule Crystal Data with Superior Recognition Rate of Near-Native Ligand Poses and Better Affinity Prediction. Journal of Medicinal Chemistry, 2005, 48, 6296-6303.	6.4	314
209	Efficient similarity search in protein structure databases by k-clique hashing. Bioinformatics, 2004, 20, 1522-1526.	4.1	46
210	Comparison of substructural epitopes in enzyme active sites using self-organizing maps. Journal of Computer-Aided Molecular Design, 2004, 18, 697-708.	2.9	5
211	Probing flexibility and "induced-fit―phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2004, 56, 52-66.	2.6	75
212	Virtual screening for inhibitors of human aldose reductase. Proteins: Structure, Function and Bioinformatics, 2004, 55, 814-823.	2.6	46
213	Ligand-Supported Homology Modeling of G-Protein-Coupled Receptor Sites: Models Sufficient for Successful Virtual Screening. Angewandte Chemie - International Edition, 2004, 43, 248-251.	13.8	90
214	Non-thiol farnesyltransferase inhibitors: N-(4-tolylacetylamino-3-benzoylphenyl)-3-arylfurylacrylic acid amides. Bioorganic and Medicinal Chemistry, 2004, 12, 4585-4600.	3.0	21
215	Successful Virtual Screening for a Submicromolar Antagonist of the Neurokinin-1 Receptor Based on a Ligand-Supported Homology Model. Journal of Medicinal Chemistry, 2004, 47, 5381-5392.	6.4	179
216	Lead identification in post-genomics: computers as a complementary alternative. Drug Discovery Today: Technologies, 2004, 1, 225-230.	4.0	7

#	Article	IF	CITATIONS
217	Unexpected Nanomolar Inhibition of Carbonic Anhydrase by COX-2-Selective Celecoxib:Â New Pharmacological Opportunities Due to Related Binding Site Recognition. Journal of Medicinal Chemistry, 2004, 47, 550-557.	6.4	426
218	Understanding Protein–Ligand Interactions: The Price of Protein Flexibility. Journal of Molecular Biology, 2004, 335, 1325-1341.	4.2	51
219	Crystallographic Study of Inhibitors of tRNA-guanine Transglycosylase Suggests a New Structure-based Pharmacophore for Virtual Screening. Journal of Molecular Biology, 2004, 338, 55-75.	4.2	35
220	Assessing Scoring Functions for Proteinâ^'Ligand Interactions. Journal of Medicinal Chemistry, 2004, 47, 3032-3047.	6.4	464
221	From Hit to Lead: De Novo Design Based on Virtual Screening Hits of Inhibitors of tRNA-Guanine Transglycosylase, a Putative Target of Shigellosis Therapy. Helvetica Chimica Acta, 2003, 86, 1435-1452.	1.6	16
222	Flexible Adaptations in the Structure of the tRNA-Modifying Enzyme tRNA-Guanine Transglycosylase and Their Implications for Substrate Selectivity, Reaction Mechanism and Structure-Based Drug Design. ChemBioChem, 2003, 4, 1066-1077.	2.6	30
223	Virtual Screening for Submicromolar Leads of tRNA-guanine Transglycosylase Based on a New Unexpected Binding Mode Detected by Crystal Structure Analysis. Journal of Medicinal Chemistry, 2003, 46, 1133-1143.	6.4	110
224	Ligand-supported Homology Modelling of Protein Binding-sites using Knowledge-based Potentials. Journal of Molecular Biology, 2003, 334, 327-345.	4.2	126
225	Reconstructing the Binding Site of Factor Xa in Trypsin Reveals Ligand-induced Structural Plasticity. Journal of Molecular Biology, 2003, 325, 963-977.	4.2	36
226	Relibase: Design and Development of a Database for Comprehensive Analysis of Protein–Ligand Interactions. Journal of Molecular Biology, 2003, 326, 607-620.	4.2	321
227	Utilising Structural Knowledge in Drug Design Strategies: Applications Using Relibase. Journal of Molecular Biology, 2003, 326, 621-636.	4.2	118
228	ZZ Made EZ: Influence of Inhibitor Configuration on Enzyme Selectivity. Journal of Molecular Biology, 2003, 330, 761-770.	4.2	24
229	An Essential Role for Aspartate 264 in Catalysis by tRNA-Guanine Transglycosylase from Escherichia coli. Journal of Biological Chemistry, 2003, 278, 42369-42376.	3.4	16
230	Trypsin Mutants for Structure-Based Drug Design: Expression, Refolding and Crystallisation. Biological Chemistry, 2002, 383, 1309-14.	2.5	15
231	Nonaromatic Sulfonamide Group as an Ideal Anchor for Potent Human Carbonic Anhydrase Inhibitors: Role of Hydrogen-Bonding Networks in Ligand Binding and Drug Design. Journal of Medicinal Chemistry, 2002, 45, 3583-3587.	6.4	154
232	DrugScore Meets CoMFA:Â Adaptation of Fields for Molecular Comparison (AFMoC) or How to Tailor Knowledge-Based Pair-Potentials to a Particular Protein. Journal of Medicinal Chemistry, 2002, 45, 4153-4170.	6.4	139
233	Docking into Knowledge-Based Potential Fields:  A Comparative Evaluation of DrugScore. Journal of Medicinal Chemistry, 2002, 45, 1967-1970.	6.4	96
234	A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology. Journal of Molecular Biology, 2002, 323, 387-406.	4.2	406

#	Article	IF	CITATIONS
235	Successful Virtual Screening for Novel Inhibitors of Human Carbonic Anhydrase:  Strategy and Experimental Confirmation. Journal of Medicinal Chemistry, 2002, 45, 3588-3602.	6.4	173
236	Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Il Farmaco, 2002, 57, 243-251.	0.9	94
237	Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors. Angewandte Chemie - International Edition, 2002, 41, 2644-2676.	13.8	729
238	pHâ€Dependent Binding Modes Observed in Trypsin Crystals: Lessons for Structureâ€Based Drug Design. ChemBioChem, 2002, 3, 246-249.	2.6	75
239	De Novo Design, Synthesis, and In Vitro Evaluation of Inhibitors for Prokaryotic tRNA-Guanine Transglycosylase: A Dramatic Sulfur Effect on Binding Affinity. ChemBioChem, 2002, 3, 250-253.	2.6	38
240	A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase11Edited by R. Huber. Journal of Molecular Biology, 2001, 306, 455-467.	4.2	79
241	Docking ligands onto binding site representations derived from proteins built by homology modelling. Journal of Molecular Biology, 2001, 307, 407-427.	4.2	97
242	Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibitionâ€. Journal of Molecular Biology, 2001, 313, 593-614.	4.2	140
243	Use of Relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. Biopolymers, 2001, 61, 99-110.	2.4	58
244	Subnanomolar Inhibitors from Computer Screening: A Model Study Using Human Carbonic Anhydrase II. Angewandte Chemie - International Edition, 2001, 40, 389-393.	13.8	61
245	From Structure to Function: A New Approach to Detect Functional Similarity among Proteins Independent from Sequence and Fold Homology. Angewandte Chemie - International Edition, 2001, 40, 3141-3144.	13.8	39
246	Transport of peptidomimetic thrombin inhibitors with a 3-amidino-phenylalanine structure: permeability and efflux mechanism in monolayers of a human intestinal cell line (Caco-2). Pharmaceutical Research, 2001, 18, 1110-1118.	3.5	12
247	Statistical potentials and scoring functions applied to protein–ligand binding. Current Opinion in Structural Biology, 2001, 11, 231-235.	5.7	186
248	Peptide/benzodiazepine hybrids as ligands of CCKA and CCKB receptors. Biopolymers, 2000, 56, 55-76.	2.4	6
249	The structure of human aldose reductase bound to the inhibitor IDD384. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 536-540.	2.5	25
250	Simple knowledge-based descriptors to predict protein-ligand interactions. methodology and validation. Journal of Computer-Aided Molecular Design, 2000, 14, 787-803.	2.9	22
251	Title is missing!. Journal of Computer - Aided Molecular Design, 2000, 20, 115-144.	1.0	92
252	Recent developments in structure-based drug design. Journal of Molecular Medicine, 2000, 78, 269-281.	3.9	226

#	Article	IF	CITATIONS
253	Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, 2000, 295, 337-356.	4.2	1,009
254	Methodological developments and strategies for a fast flexible superposition of drug-size molecules. Journal of Computer-Aided Molecular Design, 1999, 13, 35-49.	2.9	46
255	Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. , 1999, 13, 1-10.		255
256	Three-Dimensional Quantitative Structureâ^'Activity Relationship Analyses Using Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis To Elucidate Selectivity Differences of Inhibitors Binding to Trypsin, Thrombin, and Factor Xa. Journal of Medicinal Chemistry, 1999, 42, 458-477.	6.4	432
257	Comparative molecular similarity indices analysis: CoMSIA. Journal of Computer - Aided Molecular Design, 1998, 12/14, 87-104.	1.0	80
258	FlexS:Â A Method for Fast Flexible Ligand Superposition. Journal of Medicinal Chemistry, 1998, 41, 4502-4520.	6.4	246
259	A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology, 1996, 261, 470-489.	4.2	2,609
260	Was lÃĂŸt sich aus der molekularen Erkennung in Proteinâ€Ligandâ€Komplexen für das Design neuer Wirkstoffe lernen?. Angewandte Chemie, 1996, 108, 2750-2778.	2.0	45
261	Oxygen and Nitrogen in Competitive Situations: Which is the Hydrogenâ€Bond Acceptor?. Chemistry - A European Journal, 1996, 2, 1509-1513.	3.3	102
262	What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs?. Angewandte Chemie International Edition in English, 1996, 35, 2588-2614.	4.4	273
263	Toward a more efficient handling of conformational flexibility in computer-assisted modelling of drug molecules. Journal of Computer - Aided Molecular Design, 1995, 3, 85-105.	1.0	21
264	A fast and efficient method to generate biologically relevant conformations. Journal of Computer-Aided Molecular Design, 1994, 8, 583-606.	2.9	137
265	Different approaches toward an automatic structural alignment of drug molecules: Applications to sterol mimics, thrombin and thermolysin inhibitors. Journal of Computer-Aided Molecular Design, 1994, 8, 751-778.	2.9	89
266	Mapping common molecular fragments in crystal structures to explore conformation and configuration space under the conditions of a molecular environment. Computational and Theoretical Chemistry, 1994, 308, 53-89.	1.5	16
267	The Use of Composite Crystal-field Environments in Molecular Recognition and the de Novo Design of Protein Ligands. Journal of Molecular Biology, 1994, 237, 212-235.	4.2	213
268	Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. Journal of Medicinal Chemistry, 1994, 37, 4130-4146.	6.4	1,736
269	Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures. Journal of Chemical Information and Computer Sciences, 1994, 34, 1000-1008.	2.8	596
270	On the prediction of binding properties of drug molecules by comparative molecular field analysis. Journal of Medicinal Chemistry, 1993, 36, 70-80.	6.4	126

#	Article	IF	CITATIONS
271	The use of crystal data together with other experimental and computational results to discuss structure-reactivity and activity relationships. Structural Chemistry, 1990, 1, 597-616.	2.0	22