Orit Kollet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced thrombin/PAR1 activity promotes G-CSF- and AMD3100-induced mobilization of hematopoietic stem and progenitor cells via NO upregulation. Leukemia, 2021, 35, 3334-3338.	7.2	3
2	The doctor prescribed a fat-free diet for stem cell mobilization. Haematologica, 2021, 106, 1512-1513.	3.5	2
3	Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nature Communications, 2020, 11, 3547.	12.8	93
4	Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood, 2020, 136, 2607-2619.	1.4	47
5	Regulation of hematopoietic stem cell function by nitric oxide signaling. Blood Science, 2020, 2, 66-67.	0.9	0
6	Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: The role of bone marrow norepinephrine, tumor necrosis factor, and melatonin cycles. Experimental Hematology, 2019, 78, 1-10.	0.4	23
7	PAR1 Expression Predicts Clinical Gâ€CSF CD34 ⁺ HSPC Mobilization and Repopulation Potential in Transplanted Patients. HemaSphere, 2019, 3, e288.	2.7	4
8	Acute Inflammation Induces Lactate Release By Bone Marrow Neutrophils That Promotes Their Mobilization Via Endothelial GPR81 Signaling. Blood, 2019, 134, 3582-3582.	1.4	0
9	Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell, 2018, 23, 572-585.e7.	11.1	86
10	Nocturnal Melatonin Renews Bone and Blood Forming Stem Cells Reservoir By Metabolic Reprograming. Blood, 2018, 132, 3326-3326.	1.4	0
11	Regulation of longâ€ŧerm repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Annals of the New York Academy of Sciences, 2016, 1370, 65-81.	3.8	36
12	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	27.8	553
13	Inverse PAR1 Activity of Hematopoietic Stem Cells and BM Stromal Cells Mediates G-CSF-Induced Mobilization By Regulation of Nitric Oxide Generation. Blood, 2016, 128, 3370-3370.	1.4	1
14	Mitochondria Transfer from Hematopoietic Stem and Progenitor Cells to Pdgfrα+/Sca-1-/CD48dim BM Stromal Cells Via CX43 Gap Junctions and AMPK Signaling Inversely Regulate ROS Generation in Both Cell Populations. Blood, 2016, 128, 5-5.	1.4	11
15	Daily Light and Darkness Signals Regulate Bone Marrow Stem Cell Development and Leukocyte Production Via Tnfl± and an Interplay Between Norepinephrine and Melatonin. Blood, 2016, 128, 721-721.	1.4	1
16	EPCR Guides Hematopoietic Stem Cells Homing to the Bone Marrow Independently of Niche Clearance. Blood, 2016, 128, 4538-4538.	1.4	0
17	PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nature Medicine, 2015, 21, 1307-1317.	30.7	125
18	EPCR/PAR1 Signaling Navigates Long-Term Repopulating Hematopoietic Stem Cell Bone Marrow Homing to Thrombomodulin-Enriched Blood Vessels. Blood, 2015, 126, 33-33.	1.4	3

Orit Kollet

#	Article	IF	CITATIONS
19	Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic Stem and Progenitor Cells. Blood, 2015, 126, 664-664.	1.4	1
20	Hematopoietic Stem Cells and Their BM Stromal Microenvironment Share a Dynamic Inverse Metabolic State During Quiescence and Proliferation Via ROS Transfer Between The Two Populations. Blood, 2013, 122, 587-587.	1.4	0
21	Regulation Of Hematopoietic Stem Cell Trafficking By The Coagulation Pathway. Blood, 2013, 122, 456-456.	1.4	2
22	EPCR Limits Nitric Oxide Levels, Mediating Human and Murine Stem Cell Adhesion and Retention In The Bone Marrow, By Conjugating PAR1 and CXCR4 Signaling. Blood, 2013, 122, 795-795.	1.4	0
23	Blood Cell Replenishment and Bone Marrow Stem Cell Pool Renewal Are Regulated By Different Circadian Peaks Via Norepinephrine and TNFα/S1P Signaling. Blood, 2013, 122, 217-217.	1.4	0
24	Human and Murine β-Defensin-Derived Peptides Induce Rapid Mobilization Of Murine Hematopoietic Stem and Progenitor Cells Via Activation Of CXCR4 Signaling and CXCL12 Release. Blood, 2013, 122, 890-890.	1.4	0
25	Regulatory Cross Talks of Bone Cells, Hematopoietic Stem Cells and the Nervous System Maintain Hematopoiesis. Inflammation and Allergy: Drug Targets, 2012, 11, 170-180.	1.8	23
26	Endothelial Blood-Bone Marrow-Barrier Dynamically Regulates Balanced Stem and Progenitor Cell Trafficking and Maintenance. Blood, 2012, 120, 507-507.	1.4	0
27	Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 2011, 25, 1286-1296.	7.2	180
28	Coagulation Factor Thrombin Regulates Hematopoietic Stem and Progenitor Cell Egress and Mobilization Via PAR-1 & CXCR4 Upregulation, SDF-1 Secretion and EPCR Shedding. Blood, 2011, 118, 2341-2341.	1.4	1
29	The Chemotactic Lipid S1P Regulates Hematopoietic Progenitor Cell Egress and Mobilization Via Its Major Receptor S1P1 and by SDF-1 Inhibition In a p38/Akt/mTOR Dependent Manner. Blood, 2010, 116, 553-553.	1.4	7
30	Expansion of Normal and Leukemic Hematopoietic Progenitor Cells by PTH Requires bFGF Activation of c-Kit and Its Downstream JAK2/STAT5 Signaling Blood, 2009, 114, 2511-2511.	1.4	1
31	In Vivo Mobilization of Leukemic Human Precursor-B-ALL Cells by the CXCR4-Antagonist AMD3100 Is Via Secretion of SDF-1 and Synergistically by Catecholamine Action Blood, 2008, 112, 1920-1920.	1.4	0
32	The Multiple Roles of Osteoclasts in Host Defense: Bone Remodeling and Hematopoietic Stem Cell Mobilization. Annual Review of Immunology, 2007, 25, 51-69.	21.8	124
33	Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 2006, 12, 657-664.	30.7	697
34	HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. Journal of Clinical Investigation, 2003, 112, 160-169.	8.2	526
35	Human CD34+CXCR4â ^{~,} sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood, 2002, 100, 2778-2786.	1.4	147
36	Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. Journal of Molecular Medicine, 1997, 75, 664-673.	3.9	68