
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4747170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbazole isomers induce ultralong organic phosphorescence. Nature Materials, 2021, 20, 175-180.	27.5	407
2	The Role of Local Triplet Excited States and Dâ€A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices. Advanced Science, 2016, 3, 1600080.	11.2	403
3	Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution. Journal of the American Chemical Society, 2013, 135, 12228-12240.	13.7	277
4	Rational Design of TADF Polymers Using a Donor–Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States. Advanced Optical Materials, 2016, 4, 597-607.	7.3	235
5	Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters. Nature Communications, 2017, 8, 14987.	12.8	235
6	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 16407-16411.	13.8	230
7	The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor–acceptor charge-transfer molecules. Chemical Communications, 2016, 52, 2612-2615.	4.1	217
8	Oligoyne Single Molecule Wires. Journal of the American Chemical Society, 2009, 131, 15647-15654.	13.7	206
9	Arene–perfluoroarene interactions in crystal engineering 8: structures of 1â^¶1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons. New Journal of Chemistry, 2002, 26, 1740-1746.	2.8	181
10	Requirement for an Oxidant in Pd/Cu Co-Catalyzed Terminal Alkyne Homocoupling To Give Symmetrical 1,4-Disubstituted 1,3-Diynes. Journal of Organic Chemistry, 2005, 70, 703-706.	3.2	181
11	Engineering the singlet–triplet energy splitting in a TADF molecule. Journal of Materials Chemistry C, 2016, 4, 3815-3824. Arene-perfluoroarene interactions in crystal engineering. Part 3. Single-crystal structures of 1 : 1	5.5	175
12	complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbonsFor part 1, see ref. 1. For part 2, see ref. 2. Presented at the 16th International Symposium on Fluorine Chemistry, University of Durham, UK, 16Ā¢â,¬â€œ21 July 2000, Abstract no. 308.Electronic supplementary information (ESI) available: experimental data for the re-determination of the crystal structure of triphenylene, tables	2.8	159
13	of the ave. New Journal of Chemistry, 2001, 25, 1410-1417. Iridium-catalyzed C–H borylation of quinolines and unsymmetrical 1,2-disubstituted benzenes: insights into steric and electronic effects on selectivity. Chemical Science, 2012, 3, 3505.	7.4	152
14	Triazatruxene: A Rigid Central Donor Unit for a D–A ₃ Thermally Activated Delayed Fluorescence Material Exhibiting Subâ€Microsecond Reverse Intersystem Crossing and Unity Quantum Yield via Multiple Singlet–Triplet State Pairs. Advanced Science, 2018, 5, 1700989.	11.2	145
15	Synthesis, evaluation and application of novel bifunctional N,N-di-isopropylbenzylamineboronic acid catalysts for direct amide formation between carboxylic acids and amines. Green Chemistry, 2008, 10, 124-134.	9.0	143
16	Ionic Iridium(III) Complexes with Bulky Side Groups for Use in Light Emitting Cells: Reduction of Concentration Quenching. Advanced Functional Materials, 2009, 19, 2038-2044.	14.9	136
17	Mechanistic insights into the triazolylidene-catalysed Stetter and benzoin reactions: role of the N-aryl substituent. Chemical Science, 2013, 4, 1514.	7.4	134
18	New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole–pyridine and 1,3,4-oxadiazole–pyrimidine hybrids. Journal of Materials Chemistry, 2002, 12, 173-180.	6.7	116

#	Article	IF	CITATIONS
19	Oligo(aryleneethynylene)s with Terminal Pyridyl Groups: Synthesis and Length Dependence of the Tunneling-to-Hopping Transition of Single-Molecule Conductances. Chemistry of Materials, 2013, 25, 4340-4347.	6.7	110
20	Arene-perfluoroarene interactions in crystal engineering: structural preferences in polyfluorinated tolans. Journal of Materials Chemistry, 2004, 14, 413-420.	6.7	101
21	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2018, 130, 16645-16649.	2.0	98
22	Molecular Design Strategies for Color Tuning of Blue TADF Emitters. ACS Applied Materials & amp; Interfaces, 2019, 11, 27125-27133.	8.0	97
23	Intra- and inter-molecular carboranyl Ca€ "Ha< N hydrogen bonds in pyridyl-containing ortho-carboranesElectronic supplementary information (ESI) available: rotatable 3-D molecular structure diagrams of experimental structures of 1â€"4 and of MP2/6-31G* optimised geometries 1aâ€"7b in CHIME format. Computed GIAO NMR data for 1bâ€"4c. See http://www.rsc.org/suppdata/dt/b2/b209931d/.	3.3	90
24	Nation Transactions, 2003, 475-622 Nuclear magnetic resonance, luminescence and structural studies of lanthanide complexes with octadentate macrocyclic ligands bearing benzylphosphinate groups. Journal of the Chemical Society Dalton Transactions, 1997, , 3623-3636.	1.1	82
25	Mechanistic insights into boron-catalysed direct amidation reactions. Chemical Science, 2018, 9, 1058-1072.	7.4	82
26	Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A–l€â€"A systems containing E-dimesitylborylethenyl acceptors. Journal of Materials Chemistry, 2009, 19, 7532.	6.7	81
27	Persistent Dimer Emission in Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry C, 2019, 123, 11109-11117.	3.1	79
28	Bimetallic Cyclometalated Iridium(III) Diastereomers with Nonâ€Innocent Bridging Ligands for Highâ€Efficiency Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2014, 53, 11616-11619.	13.8	65
29	Phosphine promoted substituent redistribution reactions of B-chlorocatechol borane: molecular structures of ClBcat, BrBcat and LÂ-ClBcat (catâ€=â€1,2-O2C6H4; Lâ€=â€PMe3, PEt3, PBut3, PCy3, NEt3 Transactions RSC, 2001, , 1201-1209.	8)â€3Dalt	on 61
30	Bridged diiridium complexes for electrophosphorescent OLEDs: synthesis, X-ray crystal structures, photophysics, and devices. Journal of Materials Chemistry, 2006, 16, 1046.	6.7	61
31	Bond Rotations and Heteroatom Effects in Donor–Acceptor–Donor Molecules: Implications for Thermally Activated Delayed Fluorescence and Room Temperature Phosphorescence. Journal of Organic Chemistry, 2018, 83, 14431-14442.	3.2	61
32	Direct Amidation of Amino Acid Derivatives Catalyzed by Arylboronic Acids: Applications in Dipeptide Synthesis. European Journal of Organic Chemistry, 2013, 2013, 5692-5700.	2.4	59
33	The influence of molecular conformation on the photophysics of organic room temperature phosphorescent luminophores. Journal of Materials Chemistry C, 2018, 6, 9238-9247.	5.5	59
34	Synthesis and crystal engineering of new halogenated tetrathiafulvalene (TTF) derivatives and their charge transfer complexes and radical ion salts. Journal of Materials Chemistry, 2001, 11, 2181-2191.	6.7	58
35	Synthesis, optical properties, crystal structures and phase behaviour of selectively fluorinated 1,4-bis(4?-pyridylethynyl)benzenes, 4-(phenylethynyl)pyridines and 9,10-bis(4?-pyridylethynyl)anthracene, and a Zn(NO3)2 coordination polymer. Journal of Materials Chemistry, 2004, 14, 2395.	6.7	57
36	Donor-Ï€-Acceptor Species Derived from Functionalised 1,3-Dithiol-2-ylidene Anthracene Donor Units Exhibiting Photoinduced Electron Transfer Properties: Spectroscopic, Electrochemical, X-Ray Crystallographic and Theoretical Studies. Chemistry - A European Journal, 1998, 4, 2580-2592.	3.3	56

#	Article	IF	CITATIONS
37	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	5.5	53
38	Giant dielectric permittivity of detonation-produced nanodiamond is caused by water. Journal of Materials Chemistry, 2012, 22, 11166.	6.7	52
39	Balancing charge-transfer strength and triplet states for deep-blue thermally activated delayed fluorescence with an unconventional electron rich dibenzothiophene acceptor. Journal of Materials Chemistry C, 2019, 7, 13224-13234.	5.5	52
40	Mechanistic Studies on the Heckâ^'Mizoroki Cross-Coupling Reaction of a Hindered Vinylboronate Ester as a Key Approach to Developing a Highly Stereoselective Synthesis of a C1â^'C7Z,Z,E-Triene Synthon for Viridenomycin. Journal of Organic Chemistry, 2007, 72, 2525-2532.	3.2	50
41	Synthesis and optical characterisation of platinum(ii) poly-yne polymers incorporating substituted 1,4-diethynylbenzene derivatives and an investigation of the intermolecular interactions in the diethynylbenzene molecular precursorsElectronic supplementary information (ESI) available: atomic cooordinates for 6 and 7. See http://www.rsc.org/suppdata/nj/b2/b206946f/. New Journal of Chemistry,	2.8	49
42	Efficient Intramolecular Charge Transfer in Oligoyne‣inked Donor–π–Acceptor Molecules. Chemistry - A European Journal, 2010, 16, 1470-1479.	3.3	49
43	The effect of a heavy atom on the radiative pathways of an emitter with dual conformation, thermally-activated delayed fluorescence and room temperature phosphorescence. Journal of Materials Chemistry C, 2019, 7, 10481-10490.	5.5	49
44	The interplay of conformation and photophysical properties in deep-blue fluorescent oligomers. Chemical Communications, 2010, 46, 4812.	4.1	48
45	Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials. Chemistry of Materials, 2021, 33, 3066-3080.	6.7	47
46	Trialkyltetrathiafulvaleneấ́'Ïfấ'Tetracyanoanthraquinodimethane (R3TTFấ'Ïfấ'TCNAQ) Diads:Â Synthesis, Intramolecular Charge-Transfer Properties, and X-ray Crystal Structure. Journal of Organic Chemistry, 2001, 66, 4517-4524.	3.2	44
47	Structural, spectroscopic, electrochemical and computational studies of C,C′-diaryl-ortho-carboranes, 1-(4-XC6H4)-2-Ph-1,2-C2B10H10 (X = H, F, OMe, NMe2, NH2, OH and Oâ^'). Journal of Solid State Electrochemistry, 2009, 13, 1483-1495.	2.5	44
48	Phosphanyl Methanimine (PCN) Ligands for the Selective Trimerization/Tetramerization of Ethylene with Chromium. ACS Catalysis, 2015, 5, 7095-7098.	11.2	44
49	Impact of Methoxy Substituents on Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in All-Organic Donor–Acceptor Systems. Journal of Organic Chemistry, 2019, 84, 3801-3816.	3.2	43
50	Structural versus Electrical Functionalization of Oligo(phenylene ethynylene) Diamine Molecular Junctions. Journal of Physical Chemistry C, 2014, 118, 21655-21662.	3.1	42
51	Structure and relaxivity of macrocyclic gadolinium complexes incorporating pyridyl and 4-morpholinopyridyl substituents. New Journal of Chemistry, 1999, 23, 669.	2.8	41
52	Arene–perfluoroarene interactions in crystal engineering. Part 10. Crystal structures of 1â^¶1 complexes of octafluoronaphthalene with biphenyl and biphenylene. CrystEngComm, 2004, 6, 25-28.	2.6	41
53	Synthesis, photophysics and molecular structures of luminescent 2,5-bis(phenylethynyl)thiophenes (BPETs). New Journal of Chemistry, 2007, 31, 841-851.	2.8	41
54	Synthesis and Crystal Structures of Isolable Terminal Aryl Hexatriyne and Octatetrayne Derivatives: Arâ^'(C≡C) _{<i>n</i>} H (<i>n</i> = 3, 4). Organic Letters, 2008, 10, 3069-3072.	4.6	41

#	Article	IF	CITATIONS
55	Dinuclear iridium(iii) complexes of cyclometalated fluorenylpyridine ligands as phosphorescent dopants for efficient solution-processed OLEDs. Journal of Materials Chemistry, 2012, 22, 13529.	6.7	41
56	2,5-Di(aryleneethynyl)pyrazine derivatives: synthesis, structural and optoelectronic properties, and light-emitting device. New Journal of Chemistry, 2004, 28, 912-918.	2.8	40
57	Synthesis, optical properties, crystal structures and phase behaviour of symmetric, conjugated ethynylarene-based rigid rods with terminal carboxylate groups. Journal of Materials Chemistry, 2005, 15, 690-697.	6.7	40
58	Effects ofortho- andpara-Ring Activation on the Kinetics of SNAr Reactions of 1-Chloro-2-nitro- and 1-Phenoxy-2-nitrobenzenes with Aliphatic Amines in Acetonitrile. European Journal of Organic Chemistry, 2006, 2006, 1222-1230.	2.4	40
59	Optical and Polarity Control of Donor–Acceptor Conformation and Their Charge-Transfer States in Thermally Activated Delayed-Fluorescence Molecules. Journal of Physical Chemistry C, 2017, 121, 16462-16469.	3.1	40
60	Analysis of a Solid-State Conformational Rearrangement Using15N NMR and X-ray Crystallography. Journal of Physical Chemistry A, 1998, 102, 3505-3513.	2.5	39
61	Weak Pnictogen Bond with Bismuth: Experimental Evidence Based on Biâ^'P Throughâ€ S pace Coupling. Chemistry - A European Journal, 2019, 25, 4017-4024.	3.3	39
62	Crown-annelated 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene derivatives: a new efficient transducer in the electrochemical and spectroscopic monitoring of metal complexation. Chemical Communications, 2000, , 295-296.	4.1	37
63	Sulfur, tin and gold derivatives of 1-(2′-pyridyl)-ortho-carborane, 1-R-2-X-1,2-C2B10H10(R = 2′-pyridyl, X =) ⁻	Tj £TQq1	1 0,784314 r
64	Regiospecific high yield reductive coupling of diynesto give a luminescent rhodium complex. Chemical Communications, 2001, , 2626-2627.	4.1	36
65	From Aggregates to Clusters. Facile Formation of Hetero-Metalâ~'Metal Bonds through Reductive Desulfurization by CO in a Decapacitative Transformation of a {Pt2MS2} Tbp Frame to a {Pt2MS} Tetrahedral Core (M = Ag, Cu, and Ru). Journal of the American Chemical Society, 1997, 119, 11006-11011.	13.7	35
66	Molecular Saddles. 4.1Redox-Active Cyclophanes by Bridging the 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene System:Â Synthesis, Electrochemistry, and X-ray Crystal Structures of Neutral Species and a Dication Salt. Journal of Organic Chemistry, 2001, 66, 713-719.	3.2	35
67	Sequential Metalâ€Catalyzed <i>N</i> â€Heteroarylation and C–C Crossâ€Coupling Reactions: An Expedient Route to Tris(hetero)aryl Systems. European Journal of Organic Chemistry, 2008, 2008, 2746-2750.	2.4	35
68	Importance of Chromophore Rigidity on the Efficiency of Blue Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2018, 122, 28564-28575.	3.1	35
69	Exploiting trifluoromethyl substituents for tuning orbital character of singlet and triplet states to increase the rate of thermally activated delayed fluorescence. Materials Chemistry Frontiers, 2020, 4, 3602-3615.	5.9	35
70	PARASHIFT Probes: Solution NMR and X-ray Structural Studies of Macrocyclic Ytterbium and Yttrium Complexes. Inorganic Chemistry, 2017, 56, 4028-4038.	4.0	34
71	Delayed Blue Fluorescence via Upper-Triplet State Crossing from C–C Bonded Donor–Acceptor Charge Transfer Molecules with Azatriangulene Cores. Chemistry of Materials, 2019, 31, 6684-6695.	6.7	33
72	Are Terminal Aryl Butadiynes Stable? Synthesis and X-ray Crystal Structures of a Series of Aryl- and Heteroaryl-butadiynes (Arâ^'Câ‹®Câ^'Câ‹®Câ^'H). Journal of Organic Chemistry, 2006, 71, 8541-8544.	3.2	32

#	Article	IF	CITATIONS
73	Sulfonyl-Substituted Heteroleptic Cyclometalated Iridium(III) Complexes as Blue Emitters for Solution-Processable Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 8612-8627.	4.0	32
74	Exquisite sensitivity of the ligand field to solvation and donor polarisability in coordinatively saturated lanthanide complexes. Chemical Communications, 2018, 54, 8486-8489.	4.1	32
75	A (â^')-Sparteine-Directed Highly Enantioselective Synthesis of Boroproline. Solid- and Solution-State Structure and Properties. Journal of Organic Chemistry, 2007, 72, 6276-6279.	3.2	31
76	Molecular Saddles. 7.1New 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene Cyclophanes:Â Synthesis, Redox Properties, and X-ray Crystal Structures of Neutral Species and a Dication Salt. Journal of Organic Chemistry, 2001, 66, 3313-3320.	3.2	30
77	Bright green PhOLEDs using cyclometalated diiridium(iii) complexes with bridging oxamidato ligands as phosphorescent dopants. Journal of Materials Chemistry C, 2017, 5, 6777-6789.	5.5	30
78	New bi(tetrathiafulvalenyl) derivatives and their radical cations: synthetic and X-ray structural studies. Journal of Materials Chemistry, 2000, 10, 1273-1279.	6.7	29
79	Conformational Dependence of Triplet Energies in Rotationally Hindered N―and Sâ€Heterocyclic Dimers: New Design and Measurement Rules for High Triplet Energy OLED Host Materials. Chemistry - A European Journal, 2021, 27, 6545-6556.	3.3	29
80	A carbazole–oxadiazole diad molecule for single-emitting-component white organic light-emitting devices (WOLEDs). Tetrahedron, 2014, 70, 2015-2019.	1.9	28
81	Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π–π stacking. Dalton Transactions, 2018, 47, 2086-2098.	3.3	27
82	A novel hexakis(tetrathiafulvalene) derivative: synthesis, structure and electrochemical properties. Chemical Communications, 2000, , 331-332.	4.1	26
83	Phenylene–2,5-dimethylpyrazine co-oligomers: synthesis by Suzuki couplings, X-ray structures of neutral and diprotonated teraryl species and efficient blue emission. Journal of Materials Chemistry, 2003, 13, 1554-1557.	6.7	26
84	A Tris-Cyclometalated Iridium(III) Complex of 2-(5,5-Dioxido-dibenzothiophen-3-yl)pyridine: Synthesis, Structural, Redox and Photophysical Properties. European Journal of Inorganic Chemistry, 2007, 2007, 4808-4814.	2.0	25
85	(Dimethoxy―and Dihalopyridyl)boronic Acids and Highly Functionalized Heteroarylpyridines by Suzuki Cross oupling Reactions. European Journal of Organic Chemistry, 2008, 2008, 1458-1463.	2.4	25
86	Luminescent Platinum(II) Complexes Containing Cyclometallated Diaryl Ketimine Ligands: Synthesis, Photophysical and Computational Properties. European Journal of Inorganic Chemistry, 2010, 2010, 1963-1972.	2.0	25
87	Fully Borylated Methane and Ethane by Rutheniumâ€Mediated Cleavage and Coupling of CO. Angewandte Chemie - International Edition, 2016, 55, 4707-4710.	13.8	25
88	Synthesis, Diastereomer Separation, and Optoelectronic and Structural Properties of Dinuclear Cyclometalated Iridium(III) Complexes with Bridging Diarylhydrazide Ligands. Organometallics, 2017, 36, 981-993.	2.3	25
89	Stereoselective Chloro-Deboronation Reactions Induced by Substituted Pyridine-Iodine Chloride Complexes. European Journal of Organic Chemistry, 2005, 2005, 1876-1883.	2.4	24
90	New Pyrimidylboronic Acids and Functionalized Heteroarylpyrimidines by Suzuki Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2007, 2007, 5712-5716.	2.4	24

#	Article	IF	CITATIONS
91	Structural Versatility of Pyrene-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane) and Pyrene-2,7-bis(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane). Crystal Growth and Design, 2012, 12, 2794-2802.	3.0	24
92	Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2,2'â€Biphenyl Complexes. Chemistry - A European Journal, 2016, 22, 10523-10532	2.3.3	24
93	Excitation modulation of Eu:BPEPC based complexes as low-energy reference standards for circularly polarised luminescence (CPL). Chemical Communications, 2019, 55, 14115-14118.	4.1	24
94	Reactions of Icosahedral Carboranes with Iminotris(dimethylamino)Phosphorane HNP(NMe2)3: a Deboronation Intermediate nido-C2B10H12·N(H)P(NMe2)3, Deboronation Reactions and Hydrogen-bonded Closo-carborane Systems. Journal of Cluster Science, 2006, 17, 119-137.	3.3	22
95	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie - International Edition, 2020, 59, 882-889.	13.8	22
96	Achieving Conformational Control in Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence Emitters by Functionalization of the Central Core. Journal of Physical Chemistry C, 2019, 123, 26536-26546.	3.1	21
97	Tetrathiafulvalene revisited. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o501-o504.	0.4	20
98	First structural characterisation of a 2,1,12-MC2B9 metallacarborane, [2,2,2-(NMe2)3-closo-2,1,12-TaC2B9H11]. Trends in boron NMR shifts on replacing a {BH} vertex with a metal {MLn} vertex in icosahedral carboranes. Dalton Transactions RSC, 2000, , 3519-3525.	2.3	19
99	New group 15 compounds containing the 2,4,6-(CF3)3C6H2Â(fluoromes = Ar), 2,6-(CF3)2C6H3Â(fluoroxyl =) Tj E	ETQq1 1 2.31	0.784314 rgB
100	Crystal engineering with p-substituted 4-ethynylbenzenes using the C–Hâ∢O supramolecular synthon. CrystEngComm, 2004, 6, 184-188.	2.6	19
101	Synthesis and characterization of fluoreneâ€based oligomers and polymers incorporating <i>N</i> â€arylphenothiazineâ€ <i>S,S</i> â€dioxide units. Journal of Polymer Science Part A, 2011, 49, 1129-1137	.2.3	19
102	Unusual dual-emissive heteroleptic iridium complexes incorporating TADF cyclometalating ligands. Dalton Transactions, 2020, 49, 2190-2208.	3.3	19
103	Exploring the reactivity of tungsten bis(imido) dimethyl complexes with methyl aluminium reagents: implications for ethylene dimerization. Dalton Transactions, 2010, 39, 7038.	3.3	18
104	An Experimental and Computational Approach to Understanding the Reactions of Acyl Nitroso Compounds in [4 + 2] Cycloadditions. Journal of Organic Chemistry, 2015, 80, 9518-9534.	3.2	18
105	Synthesis and Properties of Hydrogen-Free Detonation Diamond. Propellants, Explosives, Pyrotechnics, 2015, 40, 39-45.	1.6	18
106	9,12-Diiodo-1,2-dicarba-closo-dodecaborane(12). Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o74-o76.	0.4	17
107	Pyridylpyrazole N^N ligands combined with sulfonyl-functionalised cyclometalating ligands for blue-emitting iridium(<scp>iii</scp>) complexes and solution-processable PhOLEDs. Dalton Transactions, 2017, 46, 10996-11007.	3.3	17
108	Crystal engineering with ethynylbenzenes : Part 2. Structures of 4-trimethylsilylethynyl-N,N-dimethylaniline, and 4-ethynyl-N,N-dimethylaniline with Z′ = 12 and a single-crystal to single-crystal phase transition at 122.5 ± 2 K. CrystEngComm, 2006, 8, 622-628.	2.6	16

#	Article	IF	CITATIONS
109	Color Tuning of Efficient Electroluminescence in the Blue and Green Regions Using Heteroleptic Iridium Complexes with 2-Phenoxyoxazole Ancillary Ligands. Organometallics, 2017, 36, 1810-1821.	2.3	16
110	Unravelling the Complexities of Pseudocontact Shift Analysis in Lanthanide Coordination Complexes of Differing Symmetry. Angewandte Chemie - International Edition, 2019, 58, 10290-10294.	13.8	16
111	Synthesis, characterisation and application of lanthanide cyclen complexes in organic synthesis. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 932-937.	1.3	15
112	Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives. Nanoscale, 2020, 12, 18908-18917.	5.6	15
113	The synthesis and characterisation of some Group 14 compounds containing the 2,4,6-(CF3)3C6H2, 2,6-(CF3)2C6H3 or 2,4-(CF3)2C6H3 ligands. Dalton Transactions, 2003, , 2496.	3.3	14
114	A Novel, Efficient, Diastereo- and Enantioselective Mukaiyama Aldol-Based Synthesis of a Vinyl Cyclopentanone Core Derivative of Viridenomycin. Organic Letters, 2007, 9, 5565-5568.	4.6	14
115	Molecular van der Waals symmetry affecting bulk properties of condensed phases: melting and boiling points. Structural Chemistry, 2007, 18, 477-491.	2.0	14
116	Synthesis, Structures and Reactions of Isolable Terminal Aryl/Biarylâ€butadiynes (Ar–C≡C–C≡CH). European Journal of Organic Chemistry, 2008, 2008, 5093-5098.	2.4	14
117	Application of molybdenum bis(imido) complexes in ethylene dimerisation catalysis. Dalton Transactions, 2012, 41, 5502.	3.3	14
118	2,5-bis(Arylethynyl)thienyl systems: Preparation and photophysical properties. Part II. RSC Advances, 2012, 2, 1870.	3.6	14
119	Novel synthesis and properties of hydrogen-free detonation nanodiamond. Materials Chemistry and Physics, 2018, 216, 120-129.	4.0	14
120	Effect of diamond on structure and properties of confined water. Chemical Physics Letters, 2016, 651, 8-12.	2.6	13
121	Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. Journal of Organic Chemistry, 2021, 86, 429-445.	3.2	13
122	Functionalized 8 nm Long Aryleneethynylene Molecular Wire with Alkyne Termini. European Journal of Organic Chemistry, 2007, 2007, 5244-5249.	2.4	12
123	19F and 13C GIAO-NMR chemical shifts for the identification of perfluoro-quinoline and -isoquinoline derivatives. Journal of Fluorine Chemistry, 2013, 155, 62-71.	1.7	12
124	On the nature of fibres grown from nanodiamond colloids. Materials Chemistry and Physics, 2016, 173, 325-332.	4.0	12
125	Weak interactions in crystals: old concepts, new developments. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 570-574.	0.5	12
126	Resonance-Enhanced Charge Delocalization in Carbazole–Oligoyne–Oxadiazole Conjugates. Journal of the American Chemical Society, 2020, 142, 18769-18781.	13.7	12

#	Article	IF	CITATIONS
127	Development of a Continuous Photochemical Benzyne-Forming Process. SynOpen, 2021, 05, 29-35.	1.7	12
128	Discovery of a photochemical cascade process by flow-based interception of isomerising alkenes. Chemical Science, 2021, 12, 9895-9901.	7.4	12
129	Derisking the Polymorph Landscape: The Complex Polymorphism of Mexiletine Hydrochloride. Crystal Growth and Design, 2021, 21, 7150-7167.	3.0	12
130	Free radical chemistry. Part 10. Addition of acyclic and cyclic alkanes to hexafluoropropene. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1623-1638.	1.3	11
131	Synthesis and Structural Characterisation of Two Copper(II) Complexes of N-(1-acetyl-2-propylidene) (2-pyridylmethyl) amine. Structural Chemistry, 2005, 16, 535-539.	2.0	11
132	Asymmetric Synthesis and Application of Homologous Pyrrolineâ€2â€alkylboronic Acids: Identification of the B–N Distance for Eliciting Bifunctional Catalysis of an Asymmetric Aldol Reaction Asian Journal of Organic Chemistry, 2014, 3, 470-479.	2.7	11
133	Experimental and theoretical studies into the structural perturbations between neutral, oxidised and reduced forms of 1,4-dithiinoquinoxaline derivatives. Journal of Materials Chemistry, 2000, 10, 2448-2457.	6.7	10
134	Conformationally-restricted bicarbazoles with phenylene bridges displaying deep-blue emission and high triplet energies: systematic structure–property relationships. Physical Chemistry Chemical Physics, 2018, 20, 11867-11875.	2.8	10
135	Highly luminescent 2-phenylpyridine-free diiridium complexes with bulky 1,2-diarylimidazole cyclometalating ligands. Dalton Transactions, 2018, 47, 16524-16533.	3.3	10
136	Bis(Imido) Tungsten Complexes: Efficient Precatalysts for the Homogeneous Dimerization of Ethylene. ACS Catalysis, 2018, 8, 11249-11263.	11.2	10
137	Paramagnetic Lanthanide NMR Probes Signalling Changes in Zinc Concentration by Emission and Chemical Shift: A Proof of Concept Study. Chemistry - A European Journal, 2019, 25, 6212-6225.	3.3	10
138	Arene–perfluoroarene interactions in crystal engineering. XV. Ferrocene–decafluorobiphenyl (1/1). Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m229-m231.	0.4	9
139	Sodium-mediated self-assembly of two nickel(II) Schiff base complexes: crystal structure and characterizations. Journal of Coordination Chemistry, 2013, 66, 2587-2596.	2.2	9
140	Exploration of Homogeneous Ethylene Dimerization Mediated by Tungsten Mono(imido) Complexes. ACS Catalysis, 2018, 8, 11235-11248.	11.2	9
141	Characterisation and cryomagnetic study of a hydrothermally synthesised hydrogen bonded L–M–L type co-ordination polymer. Structural Chemistry, 2006, 17, 401-407.	2.0	8
142	Intramolecular π–π Interactions with a Chiral Auxiliary Ligand Control Diastereoselectivity in a Cyclometalated Ir(III) Complex. Inorganic Chemistry, 2018, 57, 12836-12849.	4.0	8
143	Synthesis and Xâ€ray structure of a novel 1,2,4â€trithiolane. Journal of Heterocyclic Chemistry, 1999, 36, 823-825.	2.6	7
144	Influence of preparation procedure on polymer composition: synthesis and characterisation of polymethacrylates bearing β-D-glucopyranoside and β-D-galactopyranoside residues. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 45-52.	1.3	7

ANDREI S BATSANOV

#	Article	IF	CITATIONS
145	Fully Borylated Methane and Ethane by Rutheniumâ€Mediated Cleavage and Coupling of CO. Angewandte Chemie, 2016, 128, 4785-4788.	2.0	7
146	Influence of Bio-Isosteric Replacement on the Formation of Templating Methanol and Acetonitrile Solvates in Lophines. Crystal Growth and Design, 2016, 16, 4531-4538.	3.0	7
147	Unravelling the Complexities of Pseudocontact Shift Analysis in Lanthanide Coordination Complexes of Differing Symmetry. Angewandte Chemie, 2019, 131, 10396-10400.	2.0	7
148	Synthesis of Tetracyclic 2,3-Dihydro-1,3-diazepines from a Dinitrodibenzothiophene Derivative. Journal of Organic Chemistry, 2018, 83, 12320-12326.	3.2	6
149	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie, 2020, 132, 892-899.	2.0	6
150	Versatile Para‣ubstituted Pyridine Lanthanide Coordination Complexes Allow Late Stage Tailoring of Complex Function. Chemistry - A European Journal, 2021, 27, 17921-17927.	3.3	6
151	Electron acceptors of the fluorene series. Part 13. 9-(5-Nitrofuran-2-yildene)- and 9-(5-nitro-2-thienylidene)-2,4,5,7-tetranitrofluorenes: novel l€-extended electron acceptors. Synthesis, cyclic voltammetry and X-ray crystal structures for the acceptor and its 4,5-dimethyltetrathiafulvalene complex, and a theoretical studyâ€. Perkin Transactions II RSC, 2001, ,	1.1	5
152	1946-1951. A Dienyl Boronateâ€Aryl Nitroso Ene Reaction Entry to <i>C</i> â€Pyrrolyl Nitrones and Subsequent Conversion to Isoxazolidines. ChemistrySelect, 2018, 3, 4557-4561.	1.5	5
153	Approaches to Styrenyl Building Blocks for the Synthesis of Polyene Xanthomonadin and its Analogues. European Journal of Organic Chemistry, 2018, 2018, 5312-5322.	2.4	5
154	Quantum interference dependence on molecular configurations for cross-conjugated systems in single-molecule junctions. Molecular Systems Design and Engineering, 2022, 7, 1287-1293.	3.4	5
155	Synthesis, structure and optical characterisation of silicon phthalocyanine bis-esters. Perkin Transactions II RSC, 2002, , 59-66.	1.1	4
156	Structural investigations on Quinone Methides for understanding their properties in confined media. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 1-9.	1.6	4
157	Crystal and molecular structures of some sixâ€coordinate tin(Ⅳ) halogeno complexes with phosphorusâ€containing ligands. Heteroatom Chemistry, 2009, 20, 136-143.	0.7	4
158	Fixation of atmospheric nitrogen by nanodiamonds. New Journal of Chemistry, 2018, 42, 11160-11164.	2.8	4
159	Structural changes in colloid solutions of nanodiamond. New Journal of Chemistry, 2020, 44, 1640-1647.	2.8	4
160	Dominant dimer emission provides colour stability for red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2022, 10, 5840-5848.	5.5	4
161	A novel self-promoted Morita-Baylis-Hillman-like dimerization. Science Bulletin, 2010, 55, 2794-2798.	1.7	3
162	Shock Synthesis of Single Crystals. Propellants, Explosives, Pyrotechnics, 2013, 38, 169-171.	1.6	3

#	Article	IF	CITATIONS
163	Activated Niobium and Tantalum Imido Complexes: From Tuneable Polymerization to Selective Ethylene Dimerization Systems. ChemCatChem, 2019, 11, 1756-1764.	3.7	3
164	Temperature-Induced Single-Crystal-to-Single-Crystal Transformations with Consequential Changes in the Magnetic Properties of Fe(III) Complexes. ACS Omega, 2019, 4, 8731-8738.	3.5	3
165	Isoniazid-Gentisic acid cocrystallization: Solubility, Stability, Dissolution rate, Antioxidant and Flowability Properties Studies. Journal of Molecular Structure, 2021, 1226, 129388.	3.6	3
166	Phosphorescent mono- and diiridium(III) complexes cyclometalated by fluorenyl- or phenyl-pyridino ligands with bulky substituents, as prospective OLED dopants. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 392-399.	0.5	3
167	Structure and polymorphism of the 10.10.10 Simmons and Park cryptand. Chemical Communications, 2001, , 127-128.	4.1	2
168	2-(4-Chloroanilino)- and 2-(4-methoxyanilino)-1,2-diphenylethanone. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o304-o306.	0.4	2
169	Copper-Mediated Nitrosation: 2-Nitrosophenolato Complexes and Their Use in the Synthesis of Heterocycles. Molecules, 2019, 24, 4154.	3.8	2
170	New π-Electron Rich Donors and Cavities and their Supramolecular Assemblies: Synthesis, Electrochemistry and Crystal Structures. Molecular Crystals and Liquid Crystals, 2002, 379, 1-8.	0.9	1
171	A variable-temperature study of 1,2-bis(dimethylamino)-1,2-bis(2,6-dimethylanilino)diborane. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o394-o396.	0.4	1
172	An irreversible phase transition in 1-n-butylindeno[2,1-c]pyran-3,9-dione. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, 0413-0416.	0.4	1
173	Nitrogen Fixation and Biological Behavior of Nanodiamond Colloidal Solutions. ChemPlusChem, 2020, 85, 1905-1911.	2.8	1
174	Editorial on "Genesis on diamonds II: contact with diamond enhances human sperm performance by 300%― Annals of Translational Medicine, 2017, 5, 407-407.	1.7	1
175	Giant Permittivity of Confined Water on Nanodiamonds. Journal of Physical Chemistry C, 2022, 126, 6385-6393.	3.1	1
176	Functionalized Tetrathiafulvalene Derivatives and their Radical Cation Salts: Synthesis and X-Ray Crystal Structures. Materials Research Society Symposia Proceedings, 1997, 488, 483.	0.1	0
177	Crystal Structure of [(AuCl)2{.MU.2-1,2-bis(diisopropoxy)phosphano-1,2-dimethylhydrazine-P,P'}]. X-ray Structure Analysis Online, 2009, 25, 113-114.	0.2	0
178	Frontispiece: Weak Pnictogen Bond with Bismuth: Experimental Evidence Based on Biâ^'P Through‧pace Coupling. Chemistry - A European Journal, 2019, 25, .	3.3	0